1
|
Juengling F, Wuest F, Schirrmacher R, Abele J, Thiel A, Soucy JP, Camicioli R, Garibotto V. PET Imaging in Dementia: Mini-Review and Canadian Perspective for Clinical Use. Can J Neurol Sci 2025; 52:26-38. [PMID: 38433571 DOI: 10.1017/cjn.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.
Collapse
Affiliation(s)
- Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Garibotto
- Diagnostic Department, Nuclear Medicine and Molecular Imaging Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
3
|
Huvelle S, Pinon A, Coulon C, Bonasera T, Chapon C, Naninck T, Le Grand R, Parry CM, Kuhnast B, Caillé F. Improved Automated Radiosynthesis of [ 18F]Dolutegravir: Toward Clinical Applications. ACS OMEGA 2024; 9:41732-41741. [PMID: 39398184 PMCID: PMC11465247 DOI: 10.1021/acsomega.4c05893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Positron emission tomography imaging using radiolabeled dolutegravir (DTG) is an interesting approach to understand the biodistribution of this antiretroviral drug at HIV-1 sanctuary sites. In the course of clinical translation, we depict herein an improved and pharmaceutically compliant radiosynthesis of [18F]DTG from an original tin precursor. The radiosynthesis was achieved in two steps by copper-mediated radiofluorination, followed by enol ether deprotection using a kit-based AllInOne module. Ready-to-inject [18F]DTG was obtained in 20 ± 5% (n = 12) decay-corrected radiochemical yield within 90 min, representing a 4-fold increase compared to the previously published three-step radiosynthesis. Quality control was carried out with three consecutive [18F]DTG productions according to the current European Pharmacopoeia guidelines, which include pH determination, identity and purity (chemical, radiochemical, and radionuclide) assessments, residual solvent quantification, dosage of lithium, copper, and tin traces, sterility and bacterial endotoxin tests. [18F]DTG (∼2 GBq) was obtained with a molar activity of 59 ± 2 GBq/μmol at the time of injection and was suitable for human applications.
Collapse
Affiliation(s)
- Steve Huvelle
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Antoine Pinon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Christine Coulon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Thomas Bonasera
- GSK,
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Catherine Chapon
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Thibaut Naninck
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Roger Le Grand
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Chris M. Parry
- ViiV
Healthcare, 980 Great West Road, London TW8 9GS, U.K.
| | - Bertrand Kuhnast
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Fabien Caillé
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| |
Collapse
|
4
|
Fang XT, Raval NR, O’Dell RS, Naganawa M, Mecca AP, Chen MK, van Dyck CH, Carson RE. Synaptic density patterns in early Alzheimer's disease assessed by independent component analysis. Brain Commun 2024; 6:fcae107. [PMID: 38601916 PMCID: PMC11004947 DOI: 10.1093/braincomms/fcae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in post-mortem studies. Previously, we observed in vivo reductions of synaptic density with [11C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner. [11C]UCB-J binding to synaptic vesicle protein 2A was measured in 38 Alzheimer's disease (24 mild Alzheimer's disease dementia and 14 mild cognitive impairment) and 19 cognitively normal participants. [11C]UCB-J distribution volume ratio values were calculated with a whole cerebellum reference region. Principal components analysis was first used to extract 18 independent components to which independent component analysis was then applied. Subject loading weights per pattern were compared between groups using Kruskal-Wallis tests. Spearman's rank correlations were used to assess relationships between loading weights and measures of cognitive and functional performance: Logical Memory II, Rey Auditory Verbal Learning Test-long delay, Clinical Dementia Rating sum of boxes and Mini-Mental State Examination. We observed significant differences in loading weights among cognitively normal, mild cognitive impairment and mild Alzheimer's disease dementia groups in 5 of the 18 independent components, as determined by Kruskal-Wallis tests. Only Patterns 1 and 2 demonstrated significant differences in group loading weights after correction for multiple comparisons. Excluding the cognitively normal group, we observed significant correlations between the loading weights for Pattern 1 (left temporal cortex and the cingulate gyrus) and Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019), Mini-Mental State Examination (r = 0.48, P = 0.0055) and Logical Memory II score (r = 0.44, P = 0.013). For Pattern 2 (temporal cortices), significant associations were demonstrated between its loading weights and Logical Memory II score (r = 0.34, P = 0.0384). Following false discovery rate correction, only the relationship between the Pattern 1 loading weights with Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019) and Mini-Mental State Examination (r = 0.48, P = 0.0055) remained statistically significant. We demonstrated that independent component analysis could define coherent spatial patterns of synaptic density. Furthermore, commonly used measures of cognitive performance correlated significantly with loading weights for two patterns within only the mild cognitive impairment/mild Alzheimer's disease dementia group. This study leverages data-centric approaches to augment the conventional region-of-interest-based methods, revealing distinct patterns that differentiate between mild cognitive impairment and mild Alzheimer's disease dementia, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Xiaotian T Fang
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nakul R Raval
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan S O’Dell
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Kai Chen
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Drake LR, Wu Y, Naganawa M, Asch R, Zheng C, Najafzadeh S, Pracitto R, Lindemann M, Li S, Ropchan J, Labaree D, Emery PR, Dias M, Henry S, Nabulsi N, Matuskey D, Hillmer AT, Gallezot JD, Carson RE, Cai Z, Huang Y. First-in-Human Study of 18F-SynVesT-2: An SV2A PET Imaging Probe with Fast Brain Kinetics and High Specific Binding. J Nucl Med 2024; 65:jnumed.123.266470. [PMID: 38360052 PMCID: PMC10924160 DOI: 10.2967/jnumed.123.266470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.
Collapse
Affiliation(s)
| | - Yanjun Wu
- Yale PET Center, New Haven, Connecticut
| | | | - Ruth Asch
- Yale PET Center, New Haven, Connecticut
| | | | | | | | | | - Songye Li
- Yale PET Center, New Haven, Connecticut
| | | | | | | | - Mark Dias
- Yale PET Center, New Haven, Connecticut
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Haveman LYF, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [ 18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem 2023; 8:28. [PMID: 37824021 PMCID: PMC10570257 DOI: 10.1186/s41181-023-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction. MAIN BODY Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling. CONCLUSION Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.
Collapse
Affiliation(s)
- Lizeth Y F Haveman
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Neuroscience Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Chassé M, Pees A, Lindberg A, Liang SH, Vasdev N. Spirocyclic Iodonium Ylides for Fluorine-18 Radiolabeling of Non-Activated Arenes: From Concept to Clinical Research. CHEM REC 2023; 23:e202300072. [PMID: 37183954 DOI: 10.1002/tcr.202300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Positron emission tomography (PET) is a powerful imaging tool for drug discovery, clinical diagnosis, and monitoring of disease progression. Fluorine-18 is the most common radionuclide used for PET, but advances in radiotracer development have been limited by the historical lack of methodologies and precursors amenable to radiolabeling with fluorine-18. Radiolabeling of electron-rich (hetero)aromatic rings remains a long-standing challenge in the production of PET radiopharmaceuticals. In this personal account, we discuss the history of spirocyclic iodonium ylide precursors, from inception to applications in clinical research, for the incorporation of fluorine-18 into complex non-activated (hetero)aromatic rings.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
8
|
Xiong M, Roshanbin S, Sehlin D, Hansen HD, Knudsen GM, Rokka J, Eriksson J, Syvänen S. Synaptic density in aging mice measured by [ 18F]SynVesT-1 PET. Neuroimage 2023:120230. [PMID: 37355199 DOI: 10.1016/j.neuroimage.2023.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Johanna Rokka
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
9
|
Chen B, Ojha DP, Toyonaga T, Tong J, Pracitto R, Thomas MA, Liu M, Kapinos M, Zhang L, Zheng MQ, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson RE, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. Eur J Nucl Med Mol Imaging 2023; 50:2081-2099. [PMID: 36849748 DOI: 10.1007/s00259-023-06162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.
Collapse
Affiliation(s)
- Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Devi Prasan Ojha
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard Pracitto
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Monique A Thomas
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Michael Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Li Zhang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Krista Fowles
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
10
|
Ribarič S. Detecting Early Cognitive Decline in Alzheimer's Disease with Brain Synaptic Structural and Functional Evaluation. Biomedicines 2023; 11:355. [PMID: 36830892 PMCID: PMC9952956 DOI: 10.3390/biomedicines11020355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Early cognitive decline in patients with Alzheimer's (AD) is associated with quantifiable structural and functional connectivity changes in the brain. AD dysregulation of Aβ and tau metabolism progressively disrupt normal synaptic function, leading to loss of synapses, decreased hippocampal synaptic density and early hippocampal atrophy. Advances in brain imaging techniques in living patients have enabled the transition from clinical signs and symptoms-based AD diagnosis to biomarkers-based diagnosis, with functional brain imaging techniques, quantitative EEG, and body fluids sampling. The hippocampus has a central role in semantic and episodic memory processing. This cognitive function is critically dependent on normal intrahippocampal connections and normal hippocampal functional connectivity with many cortical regions, including the perirhinal and the entorhinal cortex, parahippocampal cortex, association regions in the temporal and parietal lobes, and prefrontal cortex. Therefore, decreased hippocampal synaptic density is reflected in the altered functional connectivity of intrinsic brain networks (aka large-scale networks), including the parietal memory, default mode, and salience networks. This narrative review discusses recent critical issues related to detecting AD-associated early cognitive decline with brain synaptic structural and functional markers in high-risk or neuropsychologically diagnosed patients with subjective cognitive impairment or mild cognitive impairment.
Collapse
Affiliation(s)
- Samo Ribarič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Michiels L, Thijs L, Mertens N, Coremans M, Vandenbulcke M, Verheyden G, Koole M, Van Laere K, Lemmens R. Longitudinal Synaptic Density PET with 11 C-UCB-J 6 Months After Ischemic Stroke. Ann Neurol 2022; 93:911-921. [PMID: 36585914 DOI: 10.1002/ana.26593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The purpose of this study was to explore longitudinal changes in synaptic density after ischemic stroke in vivo with synaptic vesicle protein 2A (SV2A) positron emission tomography (PET). METHODS We recruited patients with an ischemic stroke to undergo 11 C-UCB-J PET/MR within the first month and 6 months after the stroke. We investigated longitudinal changes of partial volume corrected 11 C-UCB-J standardized uptake value ratio (SUVR; relative to centrum semiovale) within the ischemic lesion, peri-ischemic area and unaffected ipsilesional and contralesional grey matter. We also explored crossed cerebellar diaschisis at 6 months. Additionally, we defined brain regions potentially influencing upper limb motor recovery after stroke and studied 11 C-UCB-J SUVR evolution in comparison to baseline. RESULTS In 13 patients (age = 67 ± 15 years) we observed decreasing 11 C-UCB-J SUVR in the ischemic lesion (ΔSUVR = -1.0, p = 0.001) and peri-ischemic area (ΔSUVR = -0.31, p = 0.02) at 6 months after stroke compared to baseline. Crossed cerebellar diaschisis as measured with 11 C-UCB-J SUVR was present in 11 of 13 (85%) patients at 6 months. The 11 C-UCB-J SUVR did not augment in ipsilesional or contralesional brain regions associated with motor recovery. On the contrary, there was an overall trend of declining 11 C-UCB-J SUVR in these brain regions, reaching statistical significance only in the nonlesioned part of the ipsilesional supplementary motor area (ΔSUVR = -0.83, p = 0.046). INTERPRETATION At 6 months after stroke, synaptic density further declined in the ischemic lesion and peri-ischemic area compared to baseline. Brain regions previously demonstrated to be associated with motor recovery after stroke did not show increases in synaptic density. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Liselot Thijs
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Nathalie Mertens
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Marjan Coremans
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium.,Department of Geriatric Psychiatry, University Psychiatric Centre, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Leuven Brain Institute, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
12
|
Ahmed H, Zheng MQ, Smart K, Fang H, Zhang L, Emery PR, Gao H, Ropchan J, Haider A, Tamagnan G, Carson RE, Ametamey SM, Huang Y. Evaluation of ( rac)-, ( R)-, and ( S)- 18F-OF-NB1 for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors in Nonhuman Primates. J Nucl Med 2022; 63:1912-1918. [PMID: 35710735 PMCID: PMC9730915 DOI: 10.2967/jnumed.122.263977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Despite 2 decades of research, no N-methyl-d-aspartate (NMDA) glutamate receptor (GluN) subtype 2B (GluN1/2B) radioligand is yet clinically validated. Previously, we reported on (rac)-18F-OF-NB1 as a promising GluN1/2B PET probe in rodents and its successful application for the visualization of GluN2B-containing NMDA receptors in postmortem brain tissues of patients with amyotrophic lateral sclerosis. In the current work, we report on the in vivo characterization of (rac)-, (R)-, and (S)-18F-OF-NB1 in nonhuman primates. Methods: PET scans were performed on rhesus monkeys. Plasma profiling was used to obtain the arterial input function. Regional brain time-activity curves were generated and fitted with the 1- and 2-tissue-compartment models and the multilinear analysis 1 method, and the corresponding regional volumes of distribution were calculated. Blocking studies with the GluN1/2B ligand Co 101244 (0.25 mg/kg) were performed for the enantiopure radiotracers. Receptor occupancy, nonspecific volume of distribution, and regional binding potential (BP ND) were obtained. Potential off-target binding toward σ1 receptors was assessed for (S)-18F-OF-NB1 using the σ1 receptor ligand FTC-146. Results: Free plasma fraction was moderate, ranging from 12% to 16%. All radiotracers showed high and heterogeneous brain uptake, with the highest levels in the cortex. (R)-18F-OF-NB1 showed the highest uptake and slowest washout kinetics of all tracers. The 1-tissue-compartment model and multilinear analysis 1 method fitted the regional time-activity curves well for all tracers and produced reliable regional volumes of distribution, which were higher for (R)- than (S)-18F-OF-NB1. Receptor occupancy by Co 101244 was 85% and 96% for (S)-18F-OF-NB1 and (R)-18F-OF-NB1, respectively. Pretreatment with FTC-146 at both a low (0.027 mg/kg) and high (0.125 mg/kg) dose led to a similar reduction (48% and 49%, respectively) in specific binding of (S)-18F-OF-NB1. Further, pretreatment with both Co 101244 and FTC-146 did not result in a further reduction in specific binding compared with Co 101244 alone in the same monkey (82% vs. 81%, respectively). Regional BP ND values ranged from 1.3 in the semiovale to 3.4 in the cingulate cortex for (S)-18F-OF-NB1. Conclusion: Both (R)- and (S)-18F-OF-NB1 exhibited high binding specificity to GluN2B subunit-containing NMDA receptors. The fast washout kinetics, good regional BP ND values, and high plasma free fraction render (S)-18F-OF-NB1 an attractive radiotracer for clinical translation.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- PET Center, Yale University, New Haven, Connecticut; and
| | | | - Kelly Smart
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hanyi Fang
- PET Center, Yale University, New Haven, Connecticut; and
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- PET Center, Yale University, New Haven, Connecticut; and
| | - Paul R Emery
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hong Gao
- PET Center, Yale University, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Yale University, New Haven, Connecticut; and
| | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland;
| | - Yiyun Huang
- PET Center, Yale University, New Haven, Connecticut; and
| |
Collapse
|
13
|
McErlain H, McLean EB, Morgan TEF, Burianova VK, Tavares AAS, Sutherland A. Organocatalytic Asymmetric Synthesis of SynVesT-1, a Synaptic Density Positron Emission Tomography Imaging Agent. J Org Chem 2022; 87:14443-14451. [PMID: 36222243 PMCID: PMC9639009 DOI: 10.1021/acs.joc.2c01895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heterocyclic nonacetamide ligands are used as positron emission tomography (PET) imaging agents of the synaptic vesicle glycoprotein 2A (SV2A), with potential applications in the diagnosis of various neuropsychiatric diseases. To date, the main synthetic strategy to access these optically active compounds has involved the racemic synthesis of a late-stage intermediate followed by the separation of the enantiomers. Here, we describe the use of iminium organocatalysis for the asymmetric synthesis of SynVesT-1, an important PET imaging agent of SV2A. The key step involved the conjugate addition of nitromethane with a cinnamaldehyde in the presence of the Jørgensen-Hayashi catalyst using the Merck dual acid cocatalyst system. Pinnick-type oxidation and esterification of the adduct was then followed by chemoselective nitro group reduction and cyclization using nickel borate. N-Alkylation of the resulting lactam then completed the seven-step synthesis of SynVesT-1. This approach was amenable for the synthesis of an organotin analogue, which following copper(II)-mediated fluoro-destannylation allowed rapid access to [18F]SynVesT-1.
Collapse
Affiliation(s)
- Holly McErlain
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Euan B. McLean
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Timaeus E. F. Morgan
- BHF-University
Centre for Cardiovascular Science, University
of Edinburgh, EdinburghEH16 4TJ, U.K.
| | - Valeria K. Burianova
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Adriana A. S. Tavares
- BHF-University
Centre for Cardiovascular Science, University
of Edinburgh, EdinburghEH16 4TJ, U.K.
| | - Andrew Sutherland
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.,
| |
Collapse
|
14
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
15
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
16
|
Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, Matuskey D, Finnema SJ. Imaging of Synaptic Density in Neurodegenerative Disorders. J Nucl Med 2022; 63:60S-67S. [PMID: 35649655 DOI: 10.2967/jnumed.121.263201] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
PET technology has produced many radiopharmaceuticals that target specific brain proteins and other measures of brain function. Recently, a new approach has emerged to image synaptic density by targeting the synaptic vesicle protein 2A (SV2A), an integral glycoprotein in the membrane of synaptic vesicles and widely distributed throughout the brain. Multiple SV2A ligands have been developed and translated to human use. The most successful of these to date is 11C-UCB-J, because of its high uptake, moderate metabolism, and effective quantification with a 1-tissue-compartment model. Further, since SV2A is the target of the antiepileptic drug levetiracetam, human blocking studies have characterized specific binding and potential reference regions. Regional brain SV2A levels were shown to correlate with those of synaptophysin, another commonly used marker of synaptic density, providing the basis for SV2A PET imaging to have broad utility across neuropathologic diseases. In this review, we highlight the development of SV2A tracers and the evaluation of quantification methods, including compartment modeling and simple tissue ratios. Mouse and rat models of neurodegenerative diseases have been studied with small-animal PET, providing validation by comparison to direct tissue measures. Next, we review human PET imaging results in multiple neurodegenerative disorders. Studies on Parkinson disease and Alzheimer disease have progressed most rapidly at multiple centers, with generally consistent results of patterns of SV2A or synaptic loss. In Alzheimer disease, the synaptic loss patterns differ from those of amyloid, tau, and 18F-FDG, although intertracer and interregional correlations have been found. Smaller studies have been reported in other disorders, including Lewy body dementia, frontotemporal dementia, Huntington disease, progressive supranuclear palsy, and corticobasal degeneration. In conclusion, PET imaging of SV2A has rapidly developed, and qualified radioligands are available. PET studies on humans indicate that SV2A loss might be specific to disease-associated brain regions and consistent with synaptic density loss. The recent availability of new 18F tracers, 18F-SynVesT-1 and 18F-SynVesT-2, will substantially broaden the application of SV2A PET. Future studies are needed in larger patient cohorts to establish the clinical value of SV2A PET and its potential for diagnosis and progression monitoring of neurodegenerative diseases, as well as efficacy assessment of disease-modifying therapies.
Collapse
Affiliation(s)
- Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- Neuroscience Discovery Research, Translational Imaging, AbbVie, North Chicago, Illinois
| |
Collapse
|
17
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Jiang Z, Cheng X, Chen H, Zheng W, Sun Y, Yu Z, Yang T, Zhang L, Fan D, Yang Z, Liu Y, Ai L, Wu Z. [ 18F]BIBD-181: A Novel Positron Emission Tomography Tracer Specific for Synaptic Vesicle Glycoprotein 2A. ACS Med Chem Lett 2022; 13:720-726. [PMID: 35450380 PMCID: PMC9014511 DOI: 10.1021/acsmedchemlett.2c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunction or decreased expression of synaptic vesicle glycoprotein 2A (SV2A) is closely related to the progression of neurodegenerative diseases and psychiatric disorders. The development of positron emission tomography (PET) tracers targeting SV2A can provide a strong imaging basis for the diagnosis and treatment of these diseases. Herein we report the synthesis of the novel radiotracer [18F]BIBD-181 and its preclinical evaluation. The absolute configuration of BIBD-181 was confirmed by the single-crystal structure of its precursor. The in vitro binding assay of BIBD-181 showed high SV2A binding affinity. Compared with previously reported tracers, [18F]BIBD-181 has mild labeling conditions, simple operation, and high yield. The in vivo metabolism of [18F]BIBD-181 is similar to that of UCB derivatives, and the metabolites do not interfere with brain PET imaging. Biodistribution and PET studies showed that [18F]BIBD-181 has high brain uptake and good pharmacokinetics. Autoradiography and PET inhibition studies indicated that [18F]BIBD-181 specifically binds SV2A. Because [18F]BIBD-181 exhibits excellent properties, it may be a reliable probe of quantities for SV2A-related disease diagnosis.
Collapse
Affiliation(s)
- Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tingyu Yang
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhihao Yang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100069, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
19
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
20
|
Zheng C, Holden D, Zheng MQ, Pracitto R, Wilcox KC, Lindemann M, Felchner Z, Zhang L, Tong J, Fowles K, Finnema SJ, Nabulsi N, Carson RE, Huang Y, Cai Z. A metabolically stable PET tracer for imaging synaptic vesicle protein 2A: synthesis and preclinical characterization of [ 18F]SDM-16. Eur J Nucl Med Mol Imaging 2022; 49:1482-1496. [PMID: 34761284 PMCID: PMC8940841 DOI: 10.1007/s00259-021-05597-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/17/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.
Collapse
Affiliation(s)
- Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Qiang Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Richard Pracitto
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Kyle C Wilcox
- Translational Imaging, AbbVie Inc, North Chicago, IL, 60064, USA
| | - Marcel Lindemann
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zachary Felchner
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Li Zhang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jie Tong
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Krista Fowles
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- Translational Imaging, AbbVie Inc, North Chicago, IL, 60064, USA
| | - Nabeel Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
Toyonaga T, Fesharaki-Zadeh A, Strittmatter SM, Carson RE, Cai Z. PET Imaging of Synaptic Density: Challenges and Opportunities of Synaptic Vesicle Glycoprotein 2A PET in Small Animal Imaging. Front Neurosci 2022; 16:787404. [PMID: 35345546 PMCID: PMC8957200 DOI: 10.3389/fnins.2022.787404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
The development of novel PET imaging agents for synaptic vesicle glycoprotein 2A (SV2A) allowed for the in vivo detection of synaptic density changes, which are correlated with the progression and severity of a variety of neuropsychiatric diseases. While multiple ongoing clinical investigations using SV2A PET are expanding its applications rapidly, preclinical SV2A PET imaging in animal models is an integral component of the translation research and provides supporting and complementary information. Herein, we overview preclinical SV2A PET studies in animal models of neurodegenerative disorders and discuss the opportunities and practical challenges in small animal SV2A PET imaging. At the Yale PET Center, we have conducted SV2A PET imaging studies in animal models of multiple diseases and longitudinal SV2A PET allowed us to evaluate synaptic density dynamics in the brains of disease animal models and to assess pharmacological effects of novel interventions. In this article, we discuss key considerations when designing preclinical SV2A PET imaging studies and strategies for data analysis. Specifically, we compare the brain imaging characteristics of available SV2A tracers, i.e., [11C]UCB-J, [18F]SynVesT-1, [18F]SynVesT-2, and [18F]SDM-16, in rodent brains. We also discuss the limited spatial resolution of PET scanners for small brains and challenges of kinetic modeling. We then compare different injection routes and estimate the maximum throughput (i.e., number of animals) per radiotracer synthesis by taking into account the injectable volume for each injection method, injected mass, and radioactivity half-lives. In summary, this article provides a perspective for designing and analyzing SV2A PET imaging studies in small animals.
Collapse
Affiliation(s)
- Takuya Toyonaga
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Arman Fesharaki-Zadeh
- Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Stephen M. Strittmatter
- Neurology, Yale School of Medicine, New Haven, CT, United States
- Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Richard E. Carson
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Zhengxin Cai
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
22
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Validation of SV2A-Targeted PET Imaging for Noninvasive Assessment of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222313085. [PMID: 34884893 PMCID: PMC8657802 DOI: 10.3390/ijms222313085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive and lethal variant of prostate cancer (PCa), and it remains a diagnostic challenge. Herein we report our findings of using synaptic vesicle glycoprotein 2 isoform A (SV2A) as a promising marker for positron emission tomography (PET) imaging of neuroendocrine differentiation (NED). The bioinformatic analyses revealed an amplified SV2A gene expression in clinical samples of NEPC versus castration-resistant PCa with adenocarcinoma characteristics (CRPC-Adeno). Importantly, significantly upregulated SV2A protein levels were found in both NEPC cell lines and tumor tissues. PET imaging studies were carried out in NEPC xenograft models with 18F-SynVesT-1. Although 18F-SynVesT-1 is not a cancer imaging agent, it showed a significant uptake level in the SV2A+ tumor (NCI-H660: 0.70 ± 0.14 %ID/g at 50–60 min p.i.). The SV2A blockade resulted in a significant reduction of tumor uptake (0.25 ± 0.03 %ID/g, p = 0.025), indicating the desired SV2A imaging specificity. Moreover, the comparative PET imaging study showed that the DU145 tumors could be clearly visualized by 18F-SynVesT-1 but not 68Ga-PSMA-11 nor 68Ga-DOTATATE, further validating the role of SV2A-targeted imaging for noninvasive assessment of NED in PCa. In conclusion, we demonstrated that SV2A, highly expressed in NEPC, can serve as a promising target for noninvasive imaging evaluation of NED.
Collapse
|
24
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
25
|
Kong Y, Zhang S, Huang L, Zhang C, Xie F, Zhang Z, Huang Q, Jiang D, Li J, Zhou W, Hua T, Sun B, Wang J, Guan Y. Positron Emission Computed Tomography Imaging of Synaptic Vesicle Glycoprotein 2A in Alzheimer's Disease. Front Aging Neurosci 2021; 13:731114. [PMID: 34795573 PMCID: PMC8593388 DOI: 10.3389/fnagi.2021.731114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Early diagnosis of AD is of great significance to control the development of the disease. Synaptic loss is an important pathology in the early stage of AD, therefore the measurement of synaptic density using molecular imaging technology may be an effective way to early diagnosis of AD. Synaptic vesicle glycoprotein 2A (SV2A) is located in the presynaptic vesicle membrane of virtually all synapses. SV2A Positron Emission Computed Tomography (PET) could provide a way to measure synaptic density quantitatively in living humans and to track changes in synaptic density in AD. In view of the fact that synaptic loss is the pathology of both epilepsy and AD, this review summarizes the potential role of SV2A in the pathogenesis of AD, and suggests that SV2A should be used as an important target molecule of PET imaging agent for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Pracitto R, Wilcox KC, Lindemann M, Tong J, Zheng C, Li S, Finnema SJ, Huang Y, Cai Z. Further Investigation of Synaptic Vesicle Protein 2A (SV2A) Ligands Designed for Positron Emission Tomography and Single-Photon Emission Computed Tomography Imaging: Synthesis and Structure-Activity Relationship of Substituted Pyridinylmethyl-4-(3,5-difluorophenyl)pyrrolidin-2-ones. ACS OMEGA 2021; 6:27676-27683. [PMID: 34722967 PMCID: PMC8552234 DOI: 10.1021/acsomega.1c02433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
A series of synaptic vesicle protein 2A (SV2A) ligands were synthesized to explore the structure-activity relationship and to help further investigate a hydrogen bonding pharmacophore hypothesis. Racemic SynVesT-1 was used as a lead compound to explore the replacement of the 3-methyl group on the pyridinyl moiety with halogens and hydrocarbons. Pyridinyl isomers of racemic SynVesT-1 were also investigated. Highly potent analogs were discovered including a 3-iodo pyridinyl ligand amenable to investigation as a PET or SPECT imaging agent.
Collapse
Affiliation(s)
- Richard Pracitto
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Kyle C. Wilcox
- Translational
Imaging Neuroscience, AbbVie, North Chicago, Illinois 60064, United States
| | - Marcel Lindemann
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Jie Tong
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Chao Zheng
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Songye Li
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Sjoerd J. Finnema
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
- Translational
Imaging Neuroscience, AbbVie, North Chicago, Illinois 60064, United States
| | - Yiyun Huang
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Zhengxin Cai
- PET
Center, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
28
|
Sadasivam P, Fang XT, Toyonaga T, Lee S, Xu Y, Zheng MQ, Spurrier J, Huang Y, Strittmatter SM, Carson RE, Cai Z. Quantification of SV2A Binding in Rodent Brain Using [ 18F]SynVesT-1 and PET Imaging. Mol Imaging Biol 2021; 23:372-381. [PMID: 33258040 PMCID: PMC8105262 DOI: 10.1007/s11307-020-01567-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Synapse loss is a hallmark of Alzheimer's disease (AD) and correlates with cognitive decline. The validation of a noninvasive in vivo imaging approach to quantify synapse would greatly facilitate our understanding of AD pathogenesis and assist drug developments for AD. As animal models of neurodegenerative and neuropsychiatric disorders play a critical role in the drug discovery and development process, a robust, objective, and translational method for quantifying therapeutic drug efficacy in animal models will facilitate the drug development process. In this study, we tested the quantification reliability of the SV2A PET tracer, [18F]SynVesT-1, in a mouse model of AD (APP/PS1) and wild-type controls, and developed a simplified quantification method to facilitate large cohort preclinical imaging studies. PROCEDURES We generated nondisplaceable binding potential (BPND) and distribution volume ratio (DVR) values using the simplified reference tissue model (SRTM) on the 90-min dynamic PET imaging data, with brain stem and cerebellum as the reference region, respectively. Then, we correlated the standardized uptake value ratio (SUVR)-1 and SUVR averaged from different imaging windows with BPND and DVR, using brain stem and cerebellum as the reference region, respectively. We performed homologous competitive binding assay and autoradiographic saturation binding assay using [18F]SynVesT-1 to calculate the Bmax and Kd. RESULTS Using brain stem as the reference region, the averaged SUVR-1 from 30 to 60 min postinjection correlated well with the BPND calculated using SRTM. Using cerebellum as the reference region, the averaged SUVR from 30 to 60 min postinjection correlated well with the SRTM DVR. From the homologous competitive binding assay and autoradiographic saturation binding assay, the calculated the Bmax and Kd were 4.5-18 pmol/mg protein and 9.8-19.6 nM, respectively, for rodent brain tissue. CONCLUSIONS This simplified SUVR method provides reasonable SV2A measures in APP/PS1 mice and their littermate controls. Our data indicate that, in lieu of a full 90-min dynamic scan, a 30-min static PET scan (from 30 to 60 min postinjection) would be sufficient to provide quantification data on SV2A expression, equivalent to the data generated from kinetic modeling. The methods developed here are readily applicable to the evaluation of therapeutic effects of novel drugs in this rodent model using [18F]SynVesT-1 and small animal PET.
Collapse
Affiliation(s)
- Pragalath Sadasivam
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Xiaotian T. Fang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Supum Lee
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Yuping Xu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Cell Biology, Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Stephen M. Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Cell Biology, Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Richard E. Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Bao W, Xie F, Zuo C, Guan Y, Huang YH. PET Neuroimaging of Alzheimer's Disease: Radiotracers and Their Utility in Clinical Research. Front Aging Neurosci 2021; 13:624330. [PMID: 34025386 PMCID: PMC8134674 DOI: 10.3389/fnagi.2021.624330] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative disorder affecting millions of people worldwide and exerting tremendous socioeconomic burden on all societies. Although definitive diagnosis of AD is often made in the presence of clinical manifestations in late stages, it is now universally believed that AD is a continuum of disease commencing from the preclinical stage with typical neuropathological alterations appearing decades prior to its first symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers have been developed in a search to meet the increasing clinical need of early detection and treatment monitoring for AD, with reference to the pathophysiological targets in Alzheimer's brain. These include the pathological aggregations of misfolded proteins such as β-amyloid (Aβ) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization. In this article we survey the various PET radiotracers available for AD imaging and discuss their clinical applications especially in terms of early detection and cognitive relevance.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
30
|
Goutal S, Guillermier M, Becker G, Gaudin M, Bramoullé Y, Luxen A, Lemaire C, Plenevaux A, Salmon E, Hantraye P, Barret O, Van Camp N. The pharmacokinetics of [ 18F]UCB-H revisited in the healthy non-human primate brain. EJNMMI Res 2021; 11:36. [PMID: 33826008 PMCID: PMC8026785 DOI: 10.1186/s13550-021-00777-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. Results [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. Conclusions Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00777-8.
Collapse
Affiliation(s)
- Sébastien Goutal
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Guillaume Becker
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Mylène Gaudin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Yann Bramoullé
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Alain Plenevaux
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Eric Salmon
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Olivier Barret
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
31
|
Finnema SJ, Toyonaga T, Detyniecki K, Chen MK, Dias M, Wang Q, Lin SF, Naganawa M, Gallezot JD, Lu Y, Nabulsi NB, Huang Y, Spencer DD, Carson RE. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [ 11 C]UCB-J positron emission tomography study. Epilepsia 2020; 61:2183-2193. [PMID: 32944949 DOI: 10.1111/epi.16653] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In this positron emission tomography (PET) study with [11 C]UCB-J, we evaluated synaptic vesicle glycoprotein 2A (SV2A) binding, which is decreased in resected brain tissues from epilepsy patients, in subjects with temporal lobe epilepsy (TLE) and compared the regional binding pattern to [18 F]fluorodeoxyglucose (FDG) uptake. METHODS Twelve TLE subjects and 12 control subjects were examined. Regional [11 C]UCB-J binding potential (BPND ) values were estimated using the centrum semiovale as a reference region. [18 F]FDG uptake in TLE subjects was quantified using mean radioactivity values. Asymmetry in outcome measures was assessed by comparison of ipsilateral and contralateral regions. Partial volume correction (PVC) with the iterative Yang algorithm was applied based on the FreeSurfer segmentation. RESULTS In 11 TLE subjects with medial temporal lobe sclerosis (MTS), the hippocampal volumetric asymmetry was 25 ± 11%. After PVC, [11 C]UCB-J BPND asymmetry indices were 37 ± 19% in the hippocampus, with very limited asymmetry in other brain regions. Reductions in [11 C]UCB-J BPND values were restricted to the sclerotic hippocampus when compared to control subjects. The corresponding asymmetry in hippocampal [18 F]FDG uptake was 22 ± 7% and correlated with that of [11 C]UCB-J BPND across subjects (R2 = .38). Hippocampal asymmetries in [11 C]UCB-J binding were 1.7-fold larger than those of [18 F]FDG uptake. SIGNIFICANCE [11 C]UCB-J binding is reduced in the seizure onset zone of TLE subjects with MTS. PET imaging of SV2A may be a promising biomarker approach in the presurgical selection and evaluation of TLE patients and may improve the sensitivity of molecular imaging for seizure focus detection.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Kamil Detyniecki
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Mark Dias
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Qianyu Wang
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Becker G, Dammicco S, Bahri MA, Salmon E. The Rise of Synaptic Density PET Imaging. Molecules 2020; 25:molecules25102303. [PMID: 32422902 PMCID: PMC7288098 DOI: 10.3390/molecules25102303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022] Open
Abstract
Many neurological disorders are related to synaptic loss or pathologies. Before the boom of positrons emission tomography (PET) imaging of synapses, synaptic quantification could only be achieved in vitro on brain samples after autopsy or surgical resections. Until the mid-2010s, electron microscopy and immunohistochemical labelling of synaptic proteins were the gold-standard methods for such analyses. Over the last decade, several PET radiotracers for the synaptic vesicle 2A protein have been developed to achieve in vivo synapses visualization and quantification. Different strategies were used, namely radiolabelling with either 11C or 18F, preclinical development in rodent and non-human primates, and binding quantification with different kinetic modelling methods. This review provides an overview of these PET tracers and underlines their perspectives and limitations by focusing on radiochemical aspects, as well as preclinical proof-of-concept and the main clinical outcomes described so far.
Collapse
|