1
|
Teng Y, Yang H, Tian Y. The Development and Application of Tritium-Labeled Compounds in Biomedical Research. Molecules 2024; 29:4109. [PMID: 39274956 PMCID: PMC11397416 DOI: 10.3390/molecules29174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
With low background radiation, tritiate compounds exclusively emit intense beta particles without structural changes. This makes them a useful tool in the drug discovery arsenal. Thanks to the recent rapid progress in tritium chemistry, the preparation and analysis of tritium-labeled compounds are now much easier, simpler, and cheaper. Pharmacokinetics, autoradiography, and protein binding studies have been much more efficient with the employment of tritium-labeled compounds. This review provides a comprehensive overview of tritium-labeled compounds regarding their properties, synthesis strategies, and applications.
Collapse
Affiliation(s)
- Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
2
|
Al-Amin RA, Johansson L, Abdurakhmanov E, Landegren N, Löf L, Arngården L, Blokzijl A, Svensson R, Hammond M, Lönn P, Haybaeck J, Kamali-Moghaddam M, Jensen A, Danielson U, Artursson P, Lundbäck T, Landegren U. Monitoring drug-target interactions through target engagement-mediated amplification on arrays and in situ. Nucleic Acids Res 2022; 50:e129. [PMID: 36189884 PMCID: PMC9825164 DOI: 10.1093/nar/gkac842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/29/2023] Open
Abstract
Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.
Collapse
Affiliation(s)
- Rasel A Al-Amin
- To whom correspondence should be addressed. Tel: +46 70 0535324;
| | - Lars Johansson
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Eldar Abdurakhmanov
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine (Solna), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liza Löf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Linda Arngården
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andries Blokzijl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Svensson
- Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling (UDOPP), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Hammond
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Peter Lönn
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Annika Jenmalm Jensen
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - U Helena Danielson
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling (UDOPP), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Lundbäck
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Ulf Landegren
- Correspondence may also be addressed to Ulf Landegren. Tel: +46 18 4714910; Fax: +46 18 4714808;
| |
Collapse
|
3
|
Han Y, Yang W, Luo X, He X, Zhao H, Tang W, Yue T, Li Z. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit Rev Food Sci Nutr 2020; 62:244-260. [PMID: 32876496 DOI: 10.1080/10408398.2020.1814197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food safety has become a major global concern and the rapid detection of food nutritional ingredients and contaminants has aroused much more attention. Nanomaterials-based fluorescent sensing holds great potential in designing highly sensitive and selective detection strategies for food safety analysis. Carbon dots (CDs) possess tremendous prospects in fluorescent sensing food ingredients and contaminants due to their superior properties of chemical and photostability, highly fluorescence with tunability, and no/low-toxicity. Numerous endeavors are demanded to contribute to overcoming the challenge of lower sensitivity and selectivity of the sensors interfered by various components in intricate food matrices to ensure food safety and human health. Nanohybrid CDs based ratiometric fluorescent sensing with self-calibration is regarded as an efficient strategy for the CDs based sensors for the specific recognition of target analyte in the food matrices. This work is devoted to reviewing the development of nanohybrid CDs based ratiometric fluorescent sensing platform and the perspectives of the platform for food safety. The applications of nanohybrid CDs in sensing are summarized and the sensing mechanisms are briefly discussed.
Collapse
Affiliation(s)
- Yong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Weixia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xie He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Haiping Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, PR China
| |
Collapse
|
4
|
Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther 2020; 5:72. [PMID: 32435053 PMCID: PMC7239890 DOI: 10.1038/s41392-020-0186-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yutong Wang
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Tian
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yurou Shao
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Zhu
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Zhen Liang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Schulte-Zweckel J, Schneidewind T, Abad JL, Brockmeyer A, Janning P, Triola G. Azide-tagged sphingolipids for the proteome-wide identification of C16-ceramide-binding proteins. Chem Commun (Camb) 2018; 54:13742-13745. [DOI: 10.1039/c8cc05691a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unknown ceramide-binding proteins can be identified by combining azide-tagged sphingolipids with MS-based proteomic profiling and protein array analysis.
Collapse
Affiliation(s)
- Janine Schulte-Zweckel
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Tabea Schneidewind
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Jose Luis Abad
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spanish National Research Council (CSIC)
- 08034 Barcelona
- Spain
| | - Andreas Brockmeyer
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Petra Janning
- Department of Chemical Biology
- Max-Planck-Institute of molecular Physiology
- D-44227 Dortmund
- Germany
| | - Gemma Triola
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spanish National Research Council (CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
6
|
Cherry JJ, DiDonato CJ, Androphy EJ, Calo A, Potter K, Custer SK, Du S, Foley TL, Gopalsamy A, Reedich EJ, Gordo SM, Gordon W, Hosea N, Jones LH, Krizay DK, LaRosa G, Li H, Mathur S, Menard CA, Patel P, Ramos-Zayas R, Rietz A, Rong H, Zhang B, Tones MA. In vitro and in vivo effects of 2,4 diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS: Context-specific modulation of SMN transcript levels. PLoS One 2017; 12:e0185079. [PMID: 28945765 PMCID: PMC5612656 DOI: 10.1371/journal.pone.0185079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/06/2017] [Indexed: 12/02/2022] Open
Abstract
C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective. DAQ-DcpSi effects were characterized in cells in vitro utilizing DcpS knockdown and 7-methyl analogues as probes for DcpS vs non-DcpS-mediated effects. We also performed analysis of Smn transcript levels, RNA-Seq analysis of the transcriptome and SMN protein in order to identify affected pathways underlying the therapeutic effect, and studied lysosomotropic and non-lysosomotropic DAQ-DCpSi effects in 2B/- SMA mice. Treatment of cells caused modest and transient SMN2 mRNA increases with either no change or a decrease in SMNΔ7 and no change in SMN1 transcripts or SMN protein. RNA-Seq analysis of DAQ-DcpSi-treated N2a cells revealed significant changes in expression (both up and down) of approximately 2,000 genes across a broad range of pathways. Treatment of 2B/- SMA mice with both lysomotropic and non-lysosomotropic DAQ-DcpSi compounds had similar effects on disease phenotype indicating that the therapeutic mechanism of action is not a consequence of lysosomotropism. In striking contrast to the findings in vitro, Smn transcripts were robustly changed in tissues but there was no increase in SMN protein levels in spinal cord. We conclude that DAQ-DcpSi have reproducible benefit in SMA mice and a broad spectrum of biological effects in vitro and in vivo, but these are complex, context specific, and not the result of simple SMN2 transcriptional activation.
Collapse
Affiliation(s)
- Jonathan J. Cherry
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Christine J. DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Human Molecular Genetics Program, Ann & Robert Lurie Children’s Hospital, Stanley Manne Research Institute, Chicago, Illinois, United States of America
- * E-mail: (CJD); (WG)
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alessandro Calo
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Kyle Potter
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Human Molecular Genetics Program, Ann & Robert Lurie Children’s Hospital, Stanley Manne Research Institute, Chicago, Illinois, United States of America
| | - Sara K. Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah Du
- Precision Medicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Timothy L. Foley
- Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
- Primary Pharmacology Group, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Ariamala Gopalsamy
- Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Emily J. Reedich
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Human Molecular Genetics Program, Ann & Robert Lurie Children’s Hospital, Stanley Manne Research Institute, Chicago, Illinois, United States of America
| | - Susana M. Gordo
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - William Gordon
- Precision Medicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- * E-mail: (CJD); (WG)
| | - Natalie Hosea
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Lyn H. Jones
- Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Daniel K. Krizay
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Gregory LaRosa
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Hongxia Li
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sachin Mathur
- Business Technology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Carol A. Menard
- Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
- Primary Pharmacology Group, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Paraj Patel
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Rebeca Ramos-Zayas
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haojing Rong
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Baohong Zhang
- Clinical Genetics, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Michael A. Tones
- Rare Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Gopalsamy A, Narayanan A, Liu S, Parikh MD, Kyne RE, Fadeyi O, Tones MA, Cherry JJ, Nabhan JF, LaRosa G, Petersen DN, Menard C, Foley TL, Noell S, Ren Y, Loria PM, Maglich-Goodwin J, Rong H, Jones LH. Design of Potent mRNA Decapping Scavenger Enzyme (DcpS) Inhibitors with Improved Physicochemical Properties To Investigate the Mechanism of Therapeutic Benefit in Spinal Muscular Atrophy (SMA). J Med Chem 2017; 60:3094-3108. [DOI: 10.1021/acs.jmedchem.7b00124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ariamala Gopalsamy
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Arjun Narayanan
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shenping Liu
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mihir D. Parikh
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert E. Kyne
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Olugbeminiyi Fadeyi
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael A. Tones
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jonathan J. Cherry
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph F. Nabhan
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory LaRosa
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Donna N. Petersen
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Carol Menard
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy L. Foley
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Noell
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yong Ren
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M. Loria
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jodi Maglich-Goodwin
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Haojing Rong
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lyn H. Jones
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|