1
|
Ji H, Zhao Z, Zhang C, Li X. In situ electrosynthesis of quinone-based redox-active molecules coupling with high-purity hydrogen production. Chem Sci 2024; 15:13185-13190. [PMID: 39229367 PMCID: PMC11370267 DOI: 10.1039/d4sc03033h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/29/2024] [Indexed: 09/05/2024] Open
Abstract
Clean hydrogen production via conventional water splitting involves sluggish anodic oxygen evolution, which can be replaced with more valuable electrosynthesis reactions. Here, we propose one novel strategy for coupling in situ organic electrosynthesis with high-purity hydrogen production. A benzoquinone-derivative disodium 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron)-o1 and a naphthoquinone-derivative 2,6,8-trismethylaminemethylene-3,5-dihydroxy-1,4-naphthoquinone (TANQ) were in situ electrosynthesized and directly used in a flow battery without any further purification treatment. Constant, simultaneous production of TANQ and hydrogen was demonstrated for 61 hours, while stable charge-discharge capacities were retained for 1000 cycles. The work provided a new avenue for achieving in situ redox-active molecule synthesis and high-purity hydrogen.
Collapse
Affiliation(s)
- Hyunjoon Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ziming Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 P. R. China
| | - Changkun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 P. R. China
| | - Xianfeng Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 P. R. China
| |
Collapse
|
2
|
Wang Z, Wang QN, Ma W, Liu T, Zhang W, Zhou P, Li M, Liu X, Chang Q, Zheng H, Chang B, Li C. Hydrogen Sulfide Splitting into Hydrogen and Sulfur through Off-Field Electrocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10515-10523. [PMID: 38622088 DOI: 10.1021/acs.est.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hydrogen sulfide (H2S), a toxic gas abundant in natural gas fields and refineries, is currently being removed mainly via the Claus process. However, the emission of sulfur-containing pollutants is hard to be prevented and the hydrogen element is combined to water. Herein, we report an electron-mediated off-field electrocatalysis approach (OFEC) for complete splitting of H2S into H2 and S under ambient conditions. Fe(III)/Fe(II) and V(II)/V(III) redox mediators are used to fulfill the cycles for H2S oxidation and H2 production, respectively. Fe(III) effectively removes H2S with almost 100% conversion during its oxidation process. The H+ ions are reduced by V(II) on a nonprecious metal catalyst, tungsten carbide. The mediators are regenerated in an electrolyzer at a cell voltage of 1.05 V, close to the theoretical potential difference (1.02 V) between Fe(III)/Fe(II) and V(II)/V(III). In a laboratory bench-scale plant, the energy consumption for the production of H2 from H2S is estimated to be 2.8 kWh Nm-3 H2 using Fe(III)/Fe(II) and V(II)/V(III) mediators and further reduced to about 0.5 kWh Nm-3 H2 when employing well-designed heteropolyacid/quinone mediators. OFEC presents a cost-effective approach for the simultaneous production of H2 and elemental sulfur from H2S, along with the complete removal of H2S from industrial processes. It also provides a practical platform for electrochemical reactions involving solid precipitation and organic synthesis.
Collapse
Affiliation(s)
- Zijin Wang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-Nan Wang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiguang Ma
- Marine Engineering College, Clean Energy Center for Ship, Dalian Maritime University, Dalian 116026, China
| | - Tiefeng Liu
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Zhang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Panwang Zhou
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyi Liu
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qingbo Chang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haibing Zheng
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ben Chang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Toledo-Carrillo EA, García-Rodríguez M, Sánchez-Moren LM, Dutta J. Decoupled supercapacitive electrolyzer for membrane-free water splitting. SCIENCE ADVANCES 2024; 10:eadi3180. [PMID: 38446878 PMCID: PMC10917338 DOI: 10.1126/sciadv.adi3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Green hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm-by-5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.
Collapse
Affiliation(s)
- Esteban A. Toledo-Carrillo
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Mario García-Rodríguez
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Lorena M. Sánchez-Moren
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Joydeep Dutta
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| |
Collapse
|
4
|
Gaile A, Belyakov S, Rjabovs V, Mihailovs I, Turovska B, Batenko N. Investigation of Weak Noncovalent Interactions Directed by the Amino Substituent of Pyrido- and Pyrimido-[1,2- a]benzimidazole-8,9-diones. ACS OMEGA 2023; 8:40960-40971. [PMID: 37929094 PMCID: PMC10621016 DOI: 10.1021/acsomega.3c07005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Quinones are small redox-active molecules that are able to form intra- and intermolecular interactions both in the solid state and in solution. On the basis of 6-amino-substituted pyrido- and pyrimido-[1,2-a]benzimidazole-8,9-diones, weak interactions were investigated by single-crystal X-ray and 1H NMR spectroscopy methods. Crystallization of quinone derivatives containing a -NH-CH2- fragment led to the formation of both chiral and achiral crystals. The presence of two forms with (endo form) and without (exo form) an intramolecular hydrogen bond was experimentally detected by X-ray crystallography analysis and variable-temperature (VT) 1H NMR experiments in the cases of isopentylamino- and benzylamino-substituted derivatives. Interestingly, the exo form dominates both in the solid state and in solution.
Collapse
Affiliation(s)
- Anastasija Gaile
- Riga
Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena St., Riga LV-1048, Latvia
| | - Sergey Belyakov
- Latvian
Institute of Organic Chemistry, 21 Aizkraukles St., Riga LV-1006, Latvia
| | - Vita̅lijs Rjabovs
- Riga
Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena St., Riga LV-1048, Latvia
| | - Igors Mihailovs
- Riga
Technical University, Faculty of Computer Science and Information
Technology, 10 Zunda
krastmala, Riga LV-1048, Latvia
- University
of Latvia, Institute of Solid State Physics, 8 Ķengaraga St., Riga LV-1063, Latvia
| | - Baiba Turovska
- Latvian
Institute of Organic Chemistry, 21 Aizkraukles St., Riga LV-1006, Latvia
| | - Nelli Batenko
- Riga
Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena St., Riga LV-1048, Latvia
| |
Collapse
|
5
|
Vikraman D, Hussain S, Abbas Z, Karuppasamy K, Santhoshkumar P, Jung J, Kim HS. Density Functional Theory Approximations and Experimental Investigations on Co 1-xMo xTe 2 Alloy Electrocatalysts Tuning the Overall Water Splitting Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37229631 DOI: 10.1021/acsami.3c05055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding the relationship between electronic structure, surface characteristic, and reaction process of a catalyst helps to architect proficient electrodes for sustainable energy development. The highly active and stable catalysts made of earth-abundant materials provide a great endeavor toward green hydrogen production. Herein, we assembled the Co1-xMoxTe (x = 0-1) nanoarray structures into a bifunctional electrocatalyst to achieve high-performance hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) kinetics under alkaline conditions. The designed Co0.75Mo0.25Te and Co0.50Mo0.50 electrocatalysts require minimum overpotential and Tafel slope for high-efficacy HER and OER, respectively. Furthermore, we constructed a Co0.50Mo0.50Te2∥Co0.50Mo0.50Te2 device for overall water splitting with an overpotential of 1.39 V to achieve a current density of 10 mA cm-2, which is superior to noble electrocatalyst performance, with stable reaction throughout the 50 h continuous process. Density functional theory approximations and Gibbs free energy calculations validate the enhanced water splitting reaction catalyzed by the Co0.50Mo0.50Te2 nanoarrays. The partial replacement of Co atoms with Mo atoms in the Co0.50Mo0.50Te2 structure substantially enhances the water electrolysis kinetics through the synergistic effects between the combined metal atoms and the bonded chalcogen.
Collapse
Affiliation(s)
- Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Zeesham Abbas
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - P Santhoshkumar
- Millimeter-Wave Innovation Technology (MINT) Research Centre, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
6
|
Zhu Z, Jiang T, Sun J, Liu Z, Xie Z, Liu S, Meng Y, Peng Q, Wang W, Zhang K, Liu H, Yuan Y, Li K, Chen W. pH-Universal Decoupled Water Electrolysis Enabled by Electrocatalytic Hydrogen Gas Capacitive Chemistry. JACS AU 2023; 3:488-497. [PMID: 36873693 PMCID: PMC9975835 DOI: 10.1021/jacsau.2c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
In conventional water electrolysis (CWE), the H2 and O2 evolution reactions (HER/OER) are tightly coupled, making the generated H2 and O2 difficult to separate, thus resulting in complex separation technology and potential safety issues. Previous efforts on the design of decoupled water electrolysis mainly concentrated on multi-electrode or multi-cell configurations; however, these strategies have the limitation of involving complicated operations. Here, we propose and demonstrate a pH-universal, two-electrode capacitive decoupled water electrolyzer (referred to as all-pH-CDWE) in a single-cell configuration by utilizing a low-cost capacitive electrode and a bifunctional HER/OER electrode to separate H2 and O2 generation for decoupling water electrolysis. In the all-pH-CDWE, high-purity H2 and O2 generation alternately occur at the electrocatalytic gas electrode only by reversing the current polarity. The designed all-pH-CDWE can maintain a continuous round-trip water electrolysis for over 800 consecutive cycles with an electrolyte utilization ratio of nearly 100%. As compared to CWE, the all-pH-CDWE achieves energy efficiencies of 94% in acidic electrolytes and 97% in alkaline electrolytes at a current density of 5 mA cm-2. Further, the designed all-pH-CDWE can be scaled up to a capacity of 720 C in a high current of 1 A for each cycle with a stable HER average voltage of 0.99 V. This work provides a new strategy toward the mass production of H2 in a facilely rechargeable process with high efficiency, good robustness, and large-scale applications.
Collapse
|
7
|
Shao W, Lu B, Cao J, Zhang J, Cao H, Zhang F, Zhang C. The Use of Redox Mediators in Electrocatalysis and Electrosynthesis. Chem Asian J 2023; 18:e202201093. [PMID: 36577711 DOI: 10.1002/asia.202201093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Electrocatalysis and electrosynthesis, which convert the electrical energy and store them in the chemical forms, have been considered as promising technologies to utilize green renewable energy sources. Most of the studies focused on developing novel active molecules or advanced electrodes to improve the performance. However, the direct acquisition and electron transferring will be limited by the intrinsic characters of the electrodes. The introduce of redox mediators, which are served as the intermediate electron carriers or reservoirs without changing the final products, provide a unique approach to accelerate the electrochemical performance of these energy conversions. This review provides an overview of the recent development of electrocatalysis and electrosynthesis by using redox mediators, and provides a comprehensive discussion toward focusing on the principles and construction of these systems.
Collapse
Affiliation(s)
- Weide Shao
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Biao Lu
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Jinpeng Cao
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Jianing Zhang
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Hairu Cao
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Feifei Zhang
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Chunling Zhang
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| |
Collapse
|
8
|
Michael KH, Su ZM, Wang R, Sheng H, Li W, Wang F, Stahl SS, Jin S. Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions Enabled by a Redox Reservoir Electrode. J Am Chem Soc 2022; 144:22641-22650. [PMID: 36451553 PMCID: PMC9900757 DOI: 10.1021/jacs.2c09632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Paired electrolysis methods are appealing for chemical synthesis because they generate valuable products at both electrodes; however, development of such reactions is complicated by the need for both half-reactions to proceed under mutually compatible conditions. Here, a modular electrochemical synthesis (ModES) strategy bypasses these constraints using a "redox reservoir" (RR) to pair electrochemical half-reactions across aqueous and nonaqueous solvents. Electrochemical oxidation reactions in organic solvents, the conversion of 4-t-butyltoluene to benzylic dimethyl acetal and aldehyde in methanol or the oxidative C-H amination of naphthalene in acetonitrile, and the reduction of oxygen to hydrogen peroxide in water were paired using nickel hexacyanoferrate as an RR that can selectively store and release protons (and electrons) while serving as the counter electrode for these reactions. Selective proton transport through the RR is optimized and confirmed to enable the ion balance, and thus the successful pairing, between redox half-reactions that proceed with different rates, on different scales, and in different solvents (methanol, acetonitrile, and water).
Collapse
Affiliation(s)
- Katelyn H. Michael
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Zhi-Ming Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Rui Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Wenjie Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Fengmei Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.,State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat Chem 2022; 14:1103-1109. [PMID: 35710986 DOI: 10.1038/s41557-022-00967-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization-and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)2- to the dimer (DHA)24- by one-electron transfer followed by oxidation of (DHA)24- to DHAQ2- by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte-rebalancing the states of charge of both electrolytes without introducing extra ions.
Collapse
|
10
|
Hatch CE, Martin MI, Gilmartin PH, Xiong L, Beam DJ, Yap GPA, Von Bargen MJ, Rosenthal J, Chain WJ. Electrochemically Mediated Oxidation of Sensitive Propargylic Benzylic Alcohols. Org Lett 2022; 24:1423-1428. [PMID: 35148118 PMCID: PMC9097598 DOI: 10.1021/acs.orglett.1c03860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical oxidation of sensitive propargylic benzylic alcohols having varying substituents is reported. We describe the preparation and characterization of N-hydroxytetrafluorophthalimide (TFNHPI) and pseudo-high-throughput development of a green electrochemical oxidation protocol for sensitive propargylic benzylic alcohols that employs TFNHPI as a stable electrochemical mediator. The electrochemical oxidation of propargylic benzylic alcohols was leveraged to develop short synthetic pathways for preparing gram quantities of resveratrol natural products such as pauciflorols.
Collapse
Affiliation(s)
- Chad E Hatch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Maxwell I Martin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Philip H Gilmartin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lu Xiong
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle J Beam
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew J Von Bargen
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Bates JS, Biswas S, Suh SE, Johnson MR, Mondal B, Root TW, Stahl SS. Chemical and Electrochemical O 2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. J Am Chem Soc 2022; 144:922-927. [PMID: 34985869 PMCID: PMC8833842 DOI: 10.1021/jacs.1c11126] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
M-N-C catalysts, incorporating non-precious-metal ions (e.g. M = Fe, Co) within a nitrogen-doped carbon support, have been the focus of broad interest for electrochemical O2 reduction and aerobic oxidation reactions. The present study explores the mechanistic relationship between the O2 reduction mechanism under electrochemical and chemical conditions. Chemical O2 reduction is investigated via the aerobic oxidation of a hydroquinone, in which the O-H bonds supply the protons and electrons needed for O2 reduction to water. Mechanistic studies have been conducted to elucidate whether the M-N-C catalyst couples two independent half-reactions (IHR), similar to electrode-mediated processes, or mediates a direct inner-sphere reaction (ISR) between O2 and the organic molecule. Kinetic data support the latter ISR pathway. This conclusion is reinforced by rate/potential correlations that reveal significantly different Tafel slopes, implicating different mechanisms for chemical and electrochemical O2 reduction.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sourav Biswas
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI 53706, USA,Corresponding Authors: ;
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA,Corresponding Authors: ;
| |
Collapse
|
12
|
Nandhakumar P, Lee W, Nam S, Bhatia A, Seo J, Kim G, Lee N, Yoon YH, Joo JM, Yang H. Di(Thioether Sulfonate)-Substituted Quinolinedione as a Rapidly Dissoluble and Stable Electron Mediator and Its Application in Sensitive Biosensors. Adv Healthc Mater 2022; 11:e2101819. [PMID: 34706164 DOI: 10.1002/adhm.202101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Indexed: 11/06/2022]
Abstract
The commonly required properties of diffusive electron mediators for point-of-care testing are rapid dissolubility, high stability, and moderate formal potential in aqueous solutions. Inspired by nature, various quinone-containing electron mediators have been developed; however, satisfying all these requirements remains a challenge. Herein, a strategic design toward quinones incorporating sulfonated thioether and nitrogen-containing heteroarene moieties as solubilizing, stabilizing, and formal potential-modulating groups is reported. A systematic investigation reveals that di(thioether sulfonate)-substituted quinoline-1,4-dione (QLS) and quinoxaline-1,4-dione (QXS) display water solubilities of ≈1 m and are rapidly dissoluble. By finely balancing the electron-donating effect of the thioethers and the electron-withdrawing effect of the nitrogen atom, formal potentials suitable for electrochemical biosensors are achieved with QLS and QXS (-0.15 and -0.09 V vs Ag/AgCl, respectively, at pH 7.4). QLS is stable for >1 d in PBS (pH 7.4) and for 1 h in tris buffer (pH 9.0), which is sufficient for point-of-care testing. Furthermore, QLS, with its high electron mediation ability, is successfully used in biosensors for sensitive detection of glucose and parathyroid hormone, demonstrating detection limits of ≈0.3 × 10-3 m and ≈2 pg mL-1 , respectively. This strategy produces organic electron mediators exhibiting rapid dissolution and high stability, and will find broad application beyond quinone-based biosensors.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Woohyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Sangwook Nam
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Aman Bhatia
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Jia Seo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | | | | | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| |
Collapse
|
13
|
Wang R, Sheng H, Wang F, Li W, Roberts DS, Jin S. Sustainable Coproduction of Two Disinfectants via Hydroxide-Balanced Modular Electrochemical Synthesis Using a Redox Reservoir. ACS CENTRAL SCIENCE 2021; 7:2083-2091. [PMID: 34963900 PMCID: PMC8704031 DOI: 10.1021/acscentsci.1c01157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 06/14/2023]
Abstract
Challenges posed by the sacrificial auxiliary reactions and expensive ion-exchange membranes in conventional electrosynthesis necessitate developing new electrochemical processes to enable efficient and sustainable distributed electrochemical manufacturing. Modular electrochemical synthesis (ModES) using a redox reservoir (RR) offers a promising membrane-free approach to improve energy efficiency and reduce waste through the pairing of multiple independent oxidative and reductive half-reactions; however, undesired ion-imbalance and induced pH changes in the existing ModES process limit sustained production. Here we present Ni(OH)2 as a heterogeneous RR that can selectively store and transport the hydroxide ions involved in the target half-reactions by reversible conversion with NiOOH to enable an ion-balanced ModES of two common disinfectants, hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO). This hydroxide-balanced ModES realizes stable operation without appreciable pH swing to accumulate practically useful concentrations of H2O2 and NaClO up to 251 and 481 ppm, respectively. These results illustrate additional design principles for electrosynthesis without sacrificial auxiliary reactions and the need for ion-selective RRs for modular electrochemical manufacturing.
Collapse
Affiliation(s)
- Rui Wang
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hongyuan Sheng
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Fengmei Wang
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Wenjie Li
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David S. Roberts
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|