1
|
Gupta AD, Jaiswal VK, Chabhadiya K, Singh RS, Gupta MK, Singh H. A critical review on the properties and applications of bulk micro and nanobubbles for the degradation of organic pollutants in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179310. [PMID: 40188725 DOI: 10.1016/j.scitotenv.2025.179310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/23/2025]
Abstract
The presence of persistent organic pollutants in wastewater streams has presented significant challenges towards their removal. In the recent decade, bulk micro (1-100 μm) and nanobubble (50-150 nm) (MNB) technology has exhibited technological advancements via integration of MNB technology in degrading organic pollutants from wastewater streams. The present review critically analyses the physico-chemical properties such as stability, zeta potential, mass transfer rates, rising velocity and size distribution of MNBs. The paradigm shift from conventional wastewater treatment to more sustainable solution is initiated by the production of OH- ions and free radicals for the degradation of organic pollutants by the MNB technology. Applications of MNBs are also explored in various wastewater treatment processes such as floatation, membrane cleaning, adsorption, aeration, and advanced oxidation processes. Future researches highlighting the challenges in the development of efficient and robust MNB technology and its real-time applications have also been highlighted. It is anticipated that MNBs could be a sustainable and economic solution for wastewater treatment.
Collapse
Affiliation(s)
- Arijit Dutta Gupta
- Department of Chemical, Petroleum & Hydrogen Technology, NIMS University, Rajasthan, Jaipur 303121, India; Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Vivek Kumar Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Karan Chabhadiya
- Krakow School for Interdisciplinary PhD Studies, Polish Academy of Sciences, Krakow 31-342, Poland; Division of Biogenic Raw Material, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Krakow 31-261, Poland
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - M K Gupta
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India
| | - Harinder Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
2
|
Huang PH, Wu YY, Huang PH, Lin CM, Chen HL, Chen MH, Shih MK, Hou CY. Characterization of the effects of micro-bubble treatment on the cleanliness of intestinal sludge, physicochemical properties, and textural quality of shrimp (Litopenaeus vannamei). Food Chem 2025; 472:142909. [PMID: 39919545 DOI: 10.1016/j.foodchem.2025.142909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
This study assessed the effects of Micro-bubble (MB; average size of 36.50 μm) on the physicochemical properties of live shrimp (Litopenaeus vannamei) and cooked ones. This study also examined the visual appearance, intestinal sludge's presence, microbial decontamination efficacy, and shrimp meat's textural properties. In addition, sensory evaluation was conducted to appraise the impact of MB on the gustatory and aromatic attributes of shrimp. This study showed that MB treatment was substantially better than traditional aeration (TA) treatment in terms of appearance, color, and intestinal sludge cleanliness. Specifically, all the above indicators exhibited optimal performance by the MB 30 group. Moreover, the MB treatment effectively decontamination microbes, reduced total volatile bases nitrogen (TVB-N; from 15.27 to 10.30 mg/100 g) and improved the textural indicators, while the best performed with the MB30 group. The sensory evaluation showed that the MB treatment groups exhibited enhanced aroma and taste profiles (7.45 to 8.00 points) of the shrimp compared to the TA (6.80 and 7.80 points) and control (7.15 and 7.25 points) groups, favored by the evaluation panels. Therefore, the findings of this study reveal that MB treatment provides a practical and invaluable theoretical framework to effectively address concerns about the quality and safety of live shrimp. Refraining from contamination during initial production would benefit stakeholders by reducing food and economic losses while ensuring longer shelf-life and safety of shrimp.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai'an City, Jiangsu Province 223003, China
| | - Yi-Ying Wu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ping-Hao Huang
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chia-Min Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Min-Hung Chen
- Yuan Marketing & Processing Division, Agriculture & Food Agency, Council of Agriculture, Executive, Nantou 54044, Taiwan.
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
3
|
Zhao M, Cui H, Wang C, Song Q. Development of a 10-litre pilot scale micro-nano bubble (MNB)-enhanced photocatalytic system for wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:6200-6209. [PMID: 38471071 DOI: 10.1080/09593330.2024.2328660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
A 10-litre pilot scale micro-nano bubble (MNB)-enhanced photocatalytic degradation system was developed using ZnO as the photocatalyst and salicylic acid (SA) as the model pollutant. The effectiveness of the MNB/ZnO/UV system was systematically compared with those of MNB, UV, MNB/UV, MNB/ZnO and ZnO/UV degradation systems. The effects of process parameters, including catalyst dosage, pollutant concentration, air-intake rate, pH and salt content on the degradation of SA, were comprehensively investigated. Optimum performance was obtained at neutral conditions with a catalyst dosage of 0.3 g/L and an air-intake rate of 0.1 L/min. For the degradation of SA, a kinetic constant of 0.04126/min was achieved in the MNB/ZnO/UV system, which is 4.5 times greater than that obtained in the conventional ZnO/UV system. The substantial increase in the degradation rate can be attributed to that the air MNB not only enhanced the gas-liquid mass transfer efficiency but also elevated the concentration of dissolved oxygen. A 10-litre pilot scale MNB/ZnO/UV system was successfully applied to the purification of lake water and river water, demonstrating great application potential for wastewater treatment.
Collapse
Affiliation(s)
- Mengyu Zhao
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Haining Cui
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Chan Wang
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
4
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
5
|
Jia M, Farid MU, Ho YW, Ma X, Wong PW, Nah T, He Y, Boey MW, Lu G, Fang JKH, Fan J, An AK. Advanced nanobubble flotation for enhanced removal of sub-10 µm microplastics from wastewater. Nat Commun 2024; 15:9079. [PMID: 39433744 PMCID: PMC11493987 DOI: 10.1038/s41467-024-53304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Sub-10 µm microplastics (MPs) in aquatic environments pose significant ecological and health risks due to their mobility and potential to carry harmful microcontaminants. Our effluent analysis from a Hong Kong Sewage Treatment Works shows that traditional treatment often fails to effectively remove these MPs. These small-sized MPs are commonly neglected due to challenges in accurate quantification, analysis, and removal. This study introduces a nanobubble-assisted flotation process that enhances the removal efficiency of both regular and irregular small-sized MPs from wastewater. The proposed process outperforms the traditional flotation process by fostering a more effective interaction between bubbles and MPs, increasing removal rates of MPs from 1 µm to 10 µm by up to 12% and providing a total efficiency boost of up to 17% for various particle sizes. Improvements are attributed to enhanced collision and adhesion probabilities, hydrophobic interactions, as well as better floc flotation. Supported by empirical evidence, mathematical models, and Molecular Dynamics simulations, this research elucidates the nanoscale mechanisms at play. The findings confirm the nanobubble-assisted flotation technique as an innovative and practical approach to removing sub-10 µm MPs in water treatment processes.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gang Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
6
|
Karimi M, Parsafar G, Samouei H. Polarizing Perspectives: Ion- and Dipole-Induced Dipole Interactions Dictate Bulk Nanobubble Stability. J Phys Chem B 2024; 128:7263-7270. [PMID: 38990291 DOI: 10.1021/acs.jpcb.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The origin of the stability of bulk Nanobubbles (NBs) has been the object of scrutiny in recent years. The interplay between the surface charge on the NBs and the Laplace pressure resulting from the surface tension at the solvent-NB interface has often been evoked to explain the stability of the dispersed NBs. While the Laplace pressure is well understood in the community, the nature of the surface charge on the NBs has remained obscure. In this work, we aim to show that the solvent and the present ions can effectively polarize the NB surface by inducing a dipole moment, which in turn controls the NB stability. We show that the polarizability of the dispersed gas and the polarity of the dispersing solvent control the dipole-induced dipole interactions between the solvent and the NBs, and that, in turn, determines their stability in solution.
Collapse
Affiliation(s)
- Mohammadjavad Karimi
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gholamabbas Parsafar
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hamidreza Samouei
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Mao Y, Xie Z, Shen D, Qi S. Influence of static pressure on toluene oxidation efficiency in groundwater by micro-nano bubble ozonation. CHEMOSPHERE 2024; 347:140708. [PMID: 37967678 DOI: 10.1016/j.chemosphere.2023.140708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Micro-nano bubble ozonation has been widely applied in the purification of drinking water due to its superior characteristics such as high mass transfer rate and long resistance time. However, its application in groundwater remediation is limited, partially due to the unclear effect of static water pressure on the oxidation efficiency. This study constructed a batch reactor to investigate the influence of static pressure on toluene oxidation by ozone micro-nano bubble water. To achieve constant pressure, weight was added above the mobile reactor roof, and the initial concentrations of toluene and dissolved ozone were 1.00 mg L-1 and 0.68 mg L-1 respectively. Experimental results demonstrated that as the static water pressure increased from 0.0 to 2.5 m, the average microbubble diameter decreased significantly from 62.3 to 36.0 μm. Simultaneously, the oxidation percentage of toluene increased from 40.3% to 58.7%, and the reaction rate between toluene and hydroxyl radical (OH·) increased from 9.3 × 109 to 1.39 × 1010 M-1 s-1, indicating that the shrinkage of micro-nano bubbles generated an abundance of OH· that quickly oxidized toluene adsorbed at the bubble interface. A greater enhancement of oxidation efficiency for nitrobenzene, as compared to p-xylene, was observed after the addition of 2.5 m water pressure, which verified the larger contribution of OH· under static pressure. Although the improvement of oxidation efficiency was reduced under acid and alkaline environments, as well as in practical groundwater matrices, the overall results still demonstrated the promising application of micro-nano bubble ozonation in groundwater remediation.
Collapse
Affiliation(s)
- Yuqin Mao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zeming Xie
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|