1
|
Li Y, Ash K, Alamilla I, Joyner D, Williams DE, McKay PJ, Green B, DeBlander S, North C, Kara-Murdoch F, Swift C, Hazen TC. COVID-19 trends at the University of Tennessee: predictive insights from raw sewage SARS-CoV-2 detection and evaluation and PMMoV as an indicator for human waste. Front Microbiol 2024; 15:1379194. [PMID: 38605711 PMCID: PMC11007199 DOI: 10.3389/fmicb.2024.1379194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring the prevalence of SARS-CoV-2 on university campuses. However, concerns about effectiveness of raw sewage as a COVID-19 early warning system still exist, and it's not clear how useful normalization by simultaneous comparison of Pepper Mild Mottle Virus (PMMoV) is in addressing variations resulting from fecal discharge dilution. This study aims to contribute insights into these aspects by conducting an academic-year field trial at the student residences on the University of Tennessee, Knoxville campus, raw sewage. This was done to investigate the correlations between SARS-CoV-2 RNA load, both with and without PMMoV normalization, and various parameters, including active COVID-19 cases, self-isolations, and their combination among all student residents. Significant positive correlations between SARS-CoV-2 RNA load a week prior, during the monitoring week, and the subsequent week with active cases. Despite these correlations, normalization by PMMoV does not enhance these associations. These findings suggest the potential utility of SARS-CoV-2 RNA load as an early warning indicator and provide valuable insights into the application and limitations of WBE for COVID-19 surveillance specifically within the context of raw sewage on university campuses.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Kurt Ash
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Dominique Joyner
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Daniel Edward Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Peter J. McKay
- Battelle Memorial Institute, Columbus, OH, United States
| | - Brianna Green
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Sydney DeBlander
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Carman North
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - Fadime Kara-Murdoch
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Battelle Memorial Institute, Columbus, OH, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Cynthia Swift
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Anupong S, Chadsuthi S, Hongsing P, Hurst C, Phattharapornjaroen P, Rad S.M. AH, Fernandez S, Huang AT, Vatanaprasan P, Saethang T, Luk-in S, Storer RJ, Ounjai P, Devanga Ragupathi NK, Kanthawee P, Ngamwongsatit N, Badavath VN, Thuptimdang W, Leelahavanichkul A, Kanjanabuch T, Miyanaga K, Cui L, Nanbo A, Shibuya K, Kupwiwat R, Sano D, Furukawa T, Sei K, Higgins PG, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Abe S, Ishikawa H, Amarasiri M, Modchang C, Wannigama DL. Exploring indoor and outdoor dust as a potential tool for detection and monitoring of COVID-19 transmission. iScience 2024; 27:109043. [PMID: 38375225 PMCID: PMC10875567 DOI: 10.1016/j.isci.2024.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
This study investigated the potential of using SARS-CoV-2 viral concentrations in dust as an additional surveillance tool for early detection and monitoring of COVID-19 transmission. Dust samples were collected from 8 public locations in 16 districts of Bangkok, Thailand, from June to August 2021. SARS-CoV-2 RNA concentrations in dust were quantified, and their correlation with community case incidence was assessed. Our findings revealed a positive correlation between viral concentrations detected in dust and the relative risk of COVID-19. The highest risk was observed with no delay (0-day lag), and this risk gradually decreased as the lag time increased. We observed an overall decline in viral concentrations in public places during lockdown, closely associated with reduced human mobility. The effective reproduction number for COVID-19 transmission remained above one throughout the study period, suggesting that transmission may persist in locations beyond public areas even after the lockdown measures were in place.
Collapse
Affiliation(s)
- Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T. Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore 632009, India
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Rosalyn Kupwiwat
- Department of Dermatology. Faculty of Medicine Siriraj Hospital. Mahidol University, Bangkok, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands WA 6009, Australia
- School of Population Health, Curtin University, Bentley WA 6102, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- Department of Environmental Science, University of Auckland, Auckland 1010, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Dhammika Leshan Wannigama
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
3
|
Rezaeitavabe F, Rezaie M, Modayil M, Pham T, Ice G, Riefler G, Coschigano KT. Beyond linear regression: Modeling COVID-19 clinical cases with wastewater surveillance of SARS-CoV-2 for the city of Athens and Ohio University campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169028. [PMID: 38061656 DOI: 10.1016/j.scitotenv.2023.169028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
Wastewater-based surveillance has emerged as a detection tool for population-wide infectious diseases, including coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals shed the virus, which can be detected in wastewater using molecular techniques such as reverse transcription-digital polymerase chain reaction (RT-dPCR). This study examined the association between the number of clinical cases and the concentration of SARS-CoV-2 in wastewater beyond linear regression and for various normalizations of viral loads. Viral loads were measured in a total of 446 wastewater samples during the period from August 2021 to April 2022. These samples were collected from nine different locations, with 220 samples taken from four specific sites within the city of Athens and 226 samples from five sites within Ohio University. The correlation between COVID-19 cases and wastewater viral concentrations, which was estimated using the Pearson correlation coefficient, was statistically significant and ranged from 0.6 to 0.9. In addition, time-lagged cross correlation was applied to identify the lag time between clinical and wastewater data, estimated 4 to 7 days. While we also explored the effect on the correlation coefficients of various normalizations of viral loads accounting for procedural loss or amount of fecal material and of estimated lag times, these alternative specifications did not change our substantive conclusions. Additionally, several linear and non-linear regression models were applied to predict the COVID-19 cases given wastewater data as input. The non-linear approach was found to yield the highest R-squared and Pearson correlation and lowest Mean Absolute Error values between the predicted and actual number of COVID-19 cases for both aggregated OHIO Campus and city data. Our results provide support for previous studies on correlation and time lag and new evidence that non-linear models, approximated with artificial neural networks, should be implemented for WBS of contagious diseases.
Collapse
Affiliation(s)
- Fatemeh Rezaeitavabe
- Ohio University, Russ College of Engineering, Department of Civil and Environmental Engineering, Athens, OH 45701, USA
| | - Mehdi Rezaie
- Kansas State University, Department of Physics, Manhattan, KS 66506, USA
| | - Maria Modayil
- Ohio University, Division of Diversity and Inclusion, Athens, OH 45701, USA; Ohio University, College of Health Sciences and Professions, Department of Interdisciplinary Health Studies, Athens, OH 45701, USA
| | - Tuyen Pham
- Ohio University, Voinovich School of Leadership and Public Service, Athens, OH 45701, USA
| | - Gillian Ice
- Ohio University, College of Health Sciences and Professions, Department of Interdisciplinary Health Studies, Athens, OH 45701, USA; Ohio University, Heritage College of Osteopathic Medicine, Department of Social Medicine, Athens, OH 45701, USA
| | - Guy Riefler
- Ohio University, Russ College of Engineering, Department of Civil and Environmental Engineering, Athens, OH 45701, USA
| | - Karen T Coschigano
- Ohio University, Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Athens, OH 45701, USA.
| |
Collapse
|
4
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
5
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Hazen TC. Evaluating various composite sampling modes for detecting pathogenic SARS-CoV-2 virus in raw sewage. Front Microbiol 2023; 14:1305967. [PMID: 38075856 PMCID: PMC10702244 DOI: 10.3389/fmicb.2023.1305967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 04/23/2025] Open
Abstract
Inadequate sampling approaches to wastewater analyses can introduce biases, leading to inaccurate results such as false negatives and significant over- or underestimation of average daily viral concentrations, due to the sporadic nature of viral input. To address this challenge, we conducted a field trial within the University of Tennessee residence halls, employing different composite sampling modes that encompassed different time intervals (1 h, 2 h, 4 h, 6 h, and 24 h) across various time windows (morning, afternoon, evening, and late-night). Our primary objective was to identify the optimal approach for generating representative composite samples of SARS-CoV-2 from raw wastewater. Utilizing reverse transcription-quantitative polymerase chain reaction, we quantified the levels of SARS-CoV-2 RNA and pepper mild mottle virus (PMMoV) RNA in raw sewage. Our findings consistently demonstrated that PMMoV RNA, an indicator virus of human fecal contamination in water environment, exhibited higher abundance and lower variability compared to pathogenic SARS-CoV-2 RNA. Significantly, both SARS-CoV-2 and PMMoV RNA exhibited greater variability in 1 h individual composite samples throughout the entire sampling period, contrasting with the stability observed in other time-based composite samples. Through a comprehensive analysis of various composite sampling modes using the Quade Nonparametric ANCOVA test with date, PMMoV concentration and site as covariates, we concluded that employing a composite sampler during a focused 6 h morning window for pathogenic SARS-CoV-2 RNA is a pragmatic and cost-effective strategy for achieving representative composite samples within a single day in wastewater-based epidemiology applications. This method has the potential to significantly enhance the accuracy and reliability of data collected at the community level, thereby contributing to more informed public health decision-making during a pandemic.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kurt T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Isabella Alamilla
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Student Health Center, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Peter J. McKay
- Student Health Center, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chris Iler
- Department of Facilities Services, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
6
|
Schmiege D, Kraiselburd I, Haselhoff T, Thomas A, Doerr A, Gosch J, Schoth J, Teichgräber B, Moebus S, Meyer F. Analyzing community wastewater in sub-sewersheds for the small-scale detection of SARS-CoV-2 variants in a German metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165458. [PMID: 37454854 DOI: 10.1016/j.scitotenv.2023.165458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 proved useful, including for identifying the local appearance of newly identified virus variants. Previous studies focused on wastewater treatment plants (WWTP) with sewersheds of several hundred thousand people or at single building level, representing only a small number of people. Both approaches may prove inadequate for small-scale intra-urban inferences for early detection of emerging or novel virus variants. Our study aims (i) to analyze SARS-CoV-2 single nucleotide variants (SNVs) in wastewater of sub-sewersheds and WWTP using whole genome sequencing in order to (ii) investigate the potential of small-scale detection of novel known SARS-CoV-2 variants of concern (VOC) within a metropolitan wastewater system. We selected three sub-sewershed sampling sites, based on estimated population- and built environment-related indicators, and the inlet of the receiving WWTP in the Ruhr region, Germany. Untreated wastewater was sampled weekly between October and December 2021, with a total of 22 samples collected. SARS-CoV-2 RNA was analyzed by RT-qPCR and whole genome sequencing. For all samples, genome sequences were obtained, while only 13 samples were positive for RT-qPCR. We identified multiple specific SARS-CoV-2 SNVs in the wastewater samples of the sub-sewersheds and the WWTP. Identified SNVs reflected the dominance of VOC Delta at the time of sampling. Interestingly, we could identify an Omicron-specific SNV in one sub-sewershed. A concurrent wastewater study sampling the same WWTP detected the VOC Omicron one week later. Our observations suggest that the small-scale approach may prove particularly useful for the detection and description of spatially confined emerging or existing virus variants circulating in populations. Future studies applying small-scale sampling strategies taking into account the specific features of the wastewater system will be useful to analyze temporal and spatial variance in more detail.
Collapse
Affiliation(s)
- Dennis Schmiege
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany.
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Timo Haselhoff
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Adrian Doerr
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, 45128 Essen, Germany
| | | | - Susanne Moebus
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| |
Collapse
|
7
|
Williams BB, Newborn A, Karamat A, Zamcho F, Salerno JL, Gillevet PM, Farris D, Wintermeyer SF, Van Aken B. Detection of SARS-CoV-2 RNA in wastewater from dormitory buildings in a university campus: comparison with individual testing results. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2364-2377. [PMID: 37966188 PMCID: wst_2023_348 DOI: 10.2166/wst.2023.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Wastewater-based epidemiology (WBE) for monitoring COVID-19 has been largely used to detect the spread of the disease at the community level. From February to December 2022, we collected 24-h composite sewage samples from dormitory buildings in George Mason University (Fairfax, Virginia, USA) housing approximately 5,200 resident students. SARS-CoV-2 RNA extraction was achieved using an automated system based on magnetic nanoparticles. Analysis of SARS-CoV-2 RNA was performed using reverse transcription quantitative PCR based on the Centers for Disease Control and Prevention (CDC) N1 and N2 assays. From the 362 samples collected, 86% showed positive detection of SARS-CoV-2 RNA. Wastewater monitoring was able to detect SARS-CoV-2 RNA in 96% of the samples from buildings housing students with COVID-19. Over the period of study, we observed significant correlations between the SARS-CoV-2 concentration (copy number mL-1) in wastewater and the number of positive cases on campus based on individual saliva testing. Although several reports have been published on the wastewater monitoring of COVID-19 in university campuses, our study is one of the very few that provides results that were obtained during the last phase of the pandemic (roughly the year 2022), when the large majority of students were vaccinated and back on campus.
Collapse
Affiliation(s)
- Brandi B Williams
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA E-mail:
| | - Aaron Newborn
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Ayesha Karamat
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Fanella Zamcho
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Jennifer L Salerno
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | | | - David Farris
- Environmental Health and Safety, George Mason University, Fairfax, Virginia, USA
| | | | - Benoit Van Aken
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
8
|
Lopez Marin MA, Zdenkova K, Bartackova J, Cermakova E, Dostalkova A, Demnerova K, Vavruskova L, Novakova Z, Sykora P, Rumlova M, Bartacek J. Monitoring COVID-19 spread in selected Prague's schools based on the presence of SARS-CoV-2 RNA in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161935. [PMID: 36731569 PMCID: PMC9886433 DOI: 10.1016/j.scitotenv.2023.161935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic has demanded a broad range of techniques to better monitor its extent. Owing to its consistency, non-invasiveness, and cost effectiveness, wastewater-based epidemiology has emerged as a relevant approach to monitor the pandemic's course. In this work, we analyzed the extent of the COVID-19 pandemic in five primary schools in Prague, the Czech Republic, and how different preventive measures impact the presence of SARS-CoV-2 RNA copy numbers in wastewaters. Copy numbers were measured by reverse transcription-multiplex quantitative real-time PCR. These copy numbers were compared to the number of infected individuals in each school identified through regular clinical tests. Each school had a different monitoring regime and subsequent application of preventive measures to thwart the spread of COVID-19. The schools that constantly identified and swiftly quarantined infected individuals exhibited persistently low amounts of SARS-CoV-2 RNA copies in their wastewaters. In one school, a consistent monitoring of infected individuals, coupled with a delayed action to quarantine, allowed for the estimation of a linear model to predict the number of infected individuals based on the presence of SARS-CoV-2 RNA in the wastewater. The results show the importance of case detection and quarantining to stop the spread of the pandemic and its impact on the presence of SARS-CoV-2 RNA in wastewaters. This work also shows that wastewater-based epidemiological models can be reliably used even in small water catchments, but difficulties arise to fit models due to the nonconstant input of viral particles into the wastewater systems.
Collapse
Affiliation(s)
- Marco A Lopez Marin
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - K Zdenkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia.
| | - J Bartackova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - E Cermakova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| | - A Dostalkova
- Department of Biotechnology, University of Chemistry and Technology Prague, Czechia
| | - K Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| | | | - Z Novakova
- Prazske vodovody a kanalizace, a.s., Czechia
| | - P Sykora
- Prazske vodovody a kanalizace, a.s., Czechia
| | - M Rumlova
- Department of Biotechnology, University of Chemistry and Technology Prague, Czechia
| | - J Bartacek
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| |
Collapse
|
9
|
Kim S, Boehm AB. Wastewater monitoring of SARS-CoV-2 RNA at K-12 schools: comparison to pooled clinical testing data. PeerJ 2023; 11:e15079. [PMID: 36967994 PMCID: PMC10035418 DOI: 10.7717/peerj.15079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Background Wastewater measurements of SARS-CoV-2 RNA have been extensively used to supplement clinical data on COVID-19. Most examples in the literature that describe wastewater monitoring for SARS-CoV-2 RNA use samples from wastewater treatment plants and individual buildings that serve as the primary residence of community members. However, wastewater surveillance can be an attractive supplement to clinical testing in K-12 schools where individuals only spend a portion of their time but interact with others in close proximity, increasing risk of potential transmission of disease. Methods Wastewater samples were collected from two K-12 schools in California and divided into solid and liquid fractions to be processed for detection of SARS-CoV-2. The resulting detection rate in each wastewater fraction was compared to each other and the detection rate in pooled clinical specimens. Results Most wastewater samples were positive for SARS-CoV-2 RNA when clinical testing was positive (75% for solid samples and 100% for liquid samples). Wastewater samples continued to test positive for SARS-CoV-2 RNA when clinical testing was negative or in absence of clinical testing (83% for both solid and liquid samples), indicating presence of infected individuals in the schools. Wastewater solids had a higher concentration of SARS-CoV-2 than wastewater liquids on an equivalent mass basis by three orders of magnitude.
Collapse
Affiliation(s)
- Sooyeol Kim
- Stanford University, Stanford, CA, United States of America
| | | |
Collapse
|
10
|
Mohapatra S, Bhatia S, Senaratna KYK, Jong MC, Lim CMB, Gangesh GR, Lee JX, Giek GS, Cheung C, Yutao L, Luhua Y, Yong NH, Peng LC, Wong JCC, Ching NL, Gin KYH. Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID - 19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130690. [PMID: 36603423 PMCID: PMC9795800 DOI: 10.1016/j.jhazmat.2022.130690] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 05/21/2023]
Abstract
In this study, we report the implementation of a comprehensive wastewater surveillance testing program at a university campus in Singapore to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infected individuals and the usage of pharmaceuticals and personal care products (PPCPs) as well as other emerging contaminants (ECs). This unique co-monitoring program simultaneously measured SARS-CoV-2 with chemical markers/contaminants as the COVID-19 situation evolved from pandemic to endemic stages, following a nationwide mass vaccination drive. SARS-CoV-2 RNA concentrations in wastewater from campus dormitories were measured using real-time reverse transcription-polymerase chain reaction (RT-qPCR) and corroborated with the number of symptomatic COVID-19 cases confirmed with the antigen rapid test (ART). Consistent results were observed where the concentrations of SARS-CoV-2 RNA detected in wastewater increased proportionately with the number of COVID-19 infected individuals residing on campus. Similarly, a wide range of ECs, including disinfectants and antibiotics, were detected through sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques to establish PPCPs consumption patterns during various stages of the COVID-19 pandemic in Singapore. Statistical correlation of SARS-CoV-2 RNA was observed with few ECs belonging to disinfectants, PCPs and antibiotics. A high concentration of disinfectants and subsequent positive correlation with the number of reported cases on the university campus indicates that disinfectants could serve as a chemical marker during such unprecedented times.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Sumedha Bhatia
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | | | - Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Chun Min Benjamin Lim
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - G Reuben Gangesh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Jia Xiong Lee
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Goh Shin Giek
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Callie Cheung
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Ng How Yong
- Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Lim Cheh Peng
- Office of Risk Management and Compliance, National University of Singapore, 119077, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, 138667, Singapore
| | - Ng Lee Ching
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
11
|
Acosta N, Bautista MA, Waddell BJ, Du K, McCalder J, Pradhan P, Sedaghat N, Papparis C, Beaudet AB, Chen J, Van Doorn J, Xiang K, Chan L, Vivas L, Low K, Lu X, Lee J, Westlund P, Chekouo T, Dai X, Cabaj J, Bhatnagar S, Ruecker N, Achari G, Clark RG, Pearce C, Harrison JJ, Meddings J, Leal J, Ellison J, Missaghi B, Kanji JN, Larios O, Rennert‐May E, Kim J, Hrudey SE, Lee BE, Pang X, Frankowski K, Conly J, Hubert CRJ, Parkins MD. Surveillance for SARS-CoV-2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. J Med Virol 2023; 95:e28442. [PMID: 36579780 PMCID: PMC9880705 DOI: 10.1002/jmv.28442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | | | - Barbara J. Waddell
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Kristine Du
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Navid Sedaghat
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | | | - Jianwei Chen
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | | | - Kevin Xiang
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Leslie Chan
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Laura Vivas
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Kashtin Low
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Xuewen Lu
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
| | - Jangwoo Lee
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | | | - Thierry Chekouo
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
- Division of Biostatistics, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaotian Dai
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
| | - Jason Cabaj
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Provincial Population & Public HealthAlberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | - Srijak Bhatnagar
- Faculty of Science and TechnologyAthabasca UniversityAthabascaAlbertaCanada
| | | | - Gopal Achari
- Department of Civil EngineeringUniversity of CalgaryCalgaryCanada
| | - Rhonda G. Clark
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Craig Pearce
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Joe J. Harrison
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Jon Meddings
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Jenine Leal
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Jennifer Ellison
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Bayan Missaghi
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Jamil N. Kanji
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
- Department of Pathology and Laboratory MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Oscar Larios
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
| | - Elissa Rennert‐May
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Joseph Kim
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Department of Analytical and Environmental ToxicologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Bonita E. Lee
- Department of PediatricsUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children's Health Research InstituteEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Xiaoli Pang
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin Frankowski
- Advancing Canadian Water AssetsUniversity of CalgaryCalgaryCanada
| | - John Conly
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Department of Pathology and Laboratory MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | | | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| |
Collapse
|
12
|
Armas F, Chandra F, Lee WL, Gu X, Chen H, Xiao A, Leifels M, Wuertz S, Alm EJ, Thompson J. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. ENVIRONMENT INTERNATIONAL 2023; 171:107718. [PMID: 36584425 PMCID: PMC9783150 DOI: 10.1016/j.envint.2022.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 wastewater-based surveillance (WBS) offers a tool for cost-effective oversight of a population's infections. In the past two years, WBS has proven to be crucial for managing the pandemic across different geographical regions. However, the changing context of the pandemic due to high levels of COVID-19 vaccination warrants a closer examination of its implication towards SARS-CoV-2 WBS. Two main questions were raised: 1) Does vaccination cause shedding of viral signatures without infection? 2) Does vaccination affect the relationship between wastewater and clinical data? To answer, we review historical reports of shedding from viral vaccines in use prior to the COVID-19 pandemic including for polio, rotavirus, influenza and measles infection and provide a perspective on the implications of different COVID-19 vaccination strategies with regard to the potential shedding of viral signatures into the sewershed. Additionally, we reviewed studies that looked into the relationship between wastewater and clinical data and how vaccination campaigns could have affected the relationship. Finally, analyzing wastewater and clinical data from the Netherlands, we observed changes in the relationship concomitant with increasing vaccination coverage and switches in dominant variants of concern. First, that no vaccine-derived shedding is expected from the current commercial pipeline of COVID-19 vaccines that may confound interpretation of WBS data. Secondly, that breakthrough infections from vaccinated individuals contribute significantly to wastewater signals and must be interpreted in light of the changing dynamics of shedding from new variants of concern.
Collapse
Affiliation(s)
- Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|