1
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
2
|
Calles-Garcia D, Dube DH. Chemical biology tools to probe bacterial glycans. Curr Opin Chem Biol 2024; 80:102453. [PMID: 38582017 PMCID: PMC11164641 DOI: 10.1016/j.cbpa.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.
Collapse
Affiliation(s)
- Daniel Calles-Garcia
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
3
|
Barrett KA, Kassama FJ, Surks W, Mulholland AJ, Moulton KD, Dube DH. Helicobacter pylori glycan biosynthesis modulates host immune cell recognition and response. Front Cell Infect Microbiol 2024; 14:1377077. [PMID: 38572314 PMCID: PMC10987845 DOI: 10.3389/fcimb.2024.1377077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
4
|
Hajjo H, Bhardwaj N, Gefen T, Geva-Zatorsky N. Combinatorial fluorescent labeling of live anaerobic bacteria via the incorporation of azide-modified sugars into newly synthesized macromolecules. Nat Protoc 2023; 18:3767-3786. [PMID: 37821626 DOI: 10.1038/s41596-023-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/25/2023] [Indexed: 10/13/2023]
Abstract
The human gut microbiome modulates physiological functions and pathologies; however, a mechanistic understanding of microbe-host and microbe-microbe interactions remains elusive owing to a lack of suitable approaches to monitor obligate anaerobic bacterial populations. Common genetically encoded fluorescent protein reporters, derived from the green fluorescent protein, require an oxidation step for fluorescent light emission and therefore are not suitable for use in anaerobic microbes residing in the intestine. Fluorescence in situ hybridization is a useful alternative to visualize bacterial communities in their natural niche; however, it requires tissue fixation. We therefore developed an approach for the real-time detection and monitoring of live communities of anaerobic gut commensals in their natural environment. We leverage the bacterial cells' reliance on sugars for macromolecule synthesis in combinatorial click chemistry labeling, where the addition of azide-modified sugars to the culturing media enables the fluorescence labeling of newly synthesized molecules via the addition of combinations of exogenous fluorophores conjugated to cyclooctynes. This process is suitable for labeling communities of live anaerobic gut bacteria with combinations of fluorophores that do not require oxygen to mature and fluoresce, and that can be detected over time in their natural environments. The labeling procedure requires 4-9 d, depending on the varying growth rates of different bacterial strains, and an additional 1-2 d for the detection and monitoring steps. The protocol can be completed by users with basic expertise in bacterial culturing.
Collapse
Affiliation(s)
- Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Neerupma Bhardwaj
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel.
- CIFAR, MaRS Centre, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Quintana ILL, Paul A, Chowdhury A, Moulton KD, Kulkarni SS, Dube DH. Thioglycosides Act as Metabolic Inhibitors of Bacterial Glycan Biosynthesis. ACS Infect Dis 2023; 9:2025-2035. [PMID: 37698279 PMCID: PMC10580310 DOI: 10.1021/acsinfecdis.3c00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/13/2023]
Abstract
Glycans that coat the surface of bacteria are compelling antibiotic targets because they contain distinct monosaccharides that are linked to pathogenesis and are absent in human cells. Disrupting glycan biosynthesis presents a path to inhibiting the ability of a bacterium to infect the host. We previously demonstrated that O-glycosides act as metabolic inhibitors and disrupt bacterial glycan biosynthesis. Inspired by a recent study which showed that thioglycosides (S-glycosides) are 10 times more effective than O-glycosides at inhibiting glycan biosynthesis in mammalian cells, we crafted a panel of S-glycosides based on rare bacterial monosaccharides. The novel thioglycosides altered glycan biosynthesis and fitness in pathogenic bacteria but had no notable effect on glycosylation or growth in beneficial bacteria or mammalian cells. In contrast to findings in mammalian cells, S-glycosides and O-glycosides exhibited comparable potency in bacteria. However, S-glycosides exhibited enhanced selectivity relative to O-glycosides. These novel metabolic inhibitors will allow selective perturbation of the bacterial glycocalyx for functional studies and set the stage to expand our antibiotic arsenal.
Collapse
Affiliation(s)
- Isabella
de la Luz Quintana
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Ankita Paul
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400-076, India
| | - Aniqa Chowdhury
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Karen D. Moulton
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
6
|
Harnagel AP, Sheshova M, Zheng M, Zheng M, Skorupinska-Tudek K, Swiezewska E, Lupoli TJ. Preference of Bacterial Rhamnosyltransferases for 6-Deoxysugars Reveals a Strategy To Deplete O-Antigens. J Am Chem Soc 2023. [PMID: 37437030 PMCID: PMC10375533 DOI: 10.1021/jacs.3c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Bacteria synthesize hundreds of bacteria-specific or "rare" sugars that are absent in mammalian cells and enriched in 6-deoxy monosaccharides such as l-rhamnose (l-Rha). Across bacteria, l-Rha is incorporated into glycans by rhamnosyltransferases (RTs) that couple nucleotide sugar substrates (donors) to target biomolecules (acceptors). Since l-Rha is required for the biosynthesis of bacterial glycans involved in survival or host infection, RTs represent potential antibiotic or antivirulence targets. However, purified RTs and their unique bacterial sugar substrates have been difficult to obtain. Here, we use synthetic nucleotide rare sugar and glycolipid analogs to examine substrate recognition by three RTs that produce cell envelope components in diverse species, including a known pathogen. We find that bacterial RTs prefer pyrimidine nucleotide-linked 6-deoxysugars, not those containing a C6-hydroxyl, as donors. While glycolipid acceptors must contain a lipid, isoprenoid chain length, and stereochemistry can vary. Based on these observations, we demonstrate that a 6-deoxysugar transition state analog inhibits an RT in vitro and reduces levels of RT-dependent O-antigen polysaccharides in Gram-negative cells. As O-antigens are virulence factors, bacteria-specific sugar transferase inhibition represents a novel strategy to prevent bacterial infections.
Collapse
Affiliation(s)
- Alexa P Harnagel
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mia Sheshova
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Isr J Chem 2023; 63:e202200050. [PMID: 37324574 PMCID: PMC10266715 DOI: 10.1002/ijch.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/02/2024]
Abstract
Bacteria coat themselves with a dense array of cell envelope glycans that enhance bacterial fitness and promote survival. Despite the importance of bacterial glycans, their systematic study and perturbation remains challenging. Chemical tools have made important inroads toward understanding and altering bacterial glycans. This review describes how pioneering discoveries from Prof. Carolyn Bertozzi's laboratory inspired our laboratory to develop sugar probes to facilitate the study of bacterial glycans. As described below, we used metabolic glycan labelling to install bioorthogonal reporters into bacterial glycans, ultimately permitting the discovery of a protein glycosylation system, the identification of glycosylation genes, and the development of metabolic glycan inhibitors. Our results have provided an approach to screen bacterial glycans and gain insight into their function, even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Katharine Barrett
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| |
Collapse
|
8
|
van Kasteren S, Rozen DE. Using click chemistry to study microbial ecology and evolution. ISME COMMUNICATIONS 2023; 3:9. [PMID: 36721064 PMCID: PMC9889756 DOI: 10.1038/s43705-022-00205-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 02/01/2023]
Abstract
Technological advances have largely driven the revolution in our understanding of the structure and function of microbial communities. Culturing, long the primary tool to probe microbial life, was supplanted by sequencing and other -omics approaches, which allowed detailed quantitative insights into species composition, metabolic potential, transcriptional activity, secretory responses and more. Although the ability to characterize "who's there" has never been easier or cheaper, it remains technically challenging and expensive to understand what the diverse species and strains that comprise microbial communities are doing in situ, and how these behaviors change through time. Our aim in this brief review is to introduce a developing toolkit based on click chemistry that can accelerate and reduce the expense of functional analyses of the ecology and evolution of microbial communities. After first outlining the history of technological development in this field, we will discuss key applications to date using diverse labels, including BONCAT, and then end with a selective (biased) view of areas where click-chemistry and BONCAT-based approaches stand to have a significant impact on our understanding of microbial communities.
Collapse
Affiliation(s)
- Sander van Kasteren
- Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden, 2300 RA, The Netherlands.
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, 2300 RA, The Netherlands.
| |
Collapse
|
9
|
Teng KW, Hsieh KS, Hung JS, Wang CJ, Liao EC, Chen PC, Lin YH, Wu DC, Lin CH, Wang WC, Chan HL, Huang SK, Kao MC. Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins. Gut Microbes 2022; 14:2130650. [PMID: 36206406 PMCID: PMC9553153 DOI: 10.1080/19490976.2022.2130650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Collapse
Affiliation(s)
- Kai-Wen Teng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Siang Hsieh
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ji-Shiuan Hung
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Jen Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Chun Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Hsuan Lin
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,CONTACT Mou-Chieh Kao Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
10
|
Luong P, Ghosh A, Moulton KD, Kulkarni SS, Dube DH. Synthesis and Application of Rare Deoxy Amino l-Sugar Analogues to Probe Glycans in Pathogenic Bacteria. ACS Infect Dis 2022; 8:889-900. [PMID: 35302355 PMCID: PMC9445936 DOI: 10.1021/acsinfecdis.2c00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
11
|
Marando VM, Kim DE, Kiessling LL. Biosynthetic incorporation for visualizing bacterial glycans. Methods Enzymol 2022; 665:135-151. [PMID: 35379432 DOI: 10.1016/bs.mie.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell-surface glycans are central to many biological processes, yet methods for their site-selective modification are limited. Strategies for interrogating the structure and function of proteins have been enabled by chemoselective reactions of sidechain functionality for covalent modification, capture, or imaging. However, unlike protein sidechains, glycan building blocks lack distinguishing reactivity. Moreover, glycans are not primary gene products, so encoding glycan variants through genetic manipulation is challenging. Reactive functional groups can be introduced into glycans through metabolic engineering, which involves the generation of modified nucleotide-sugar building blocks. Lipid-linked building blocks, which are also used in glycan biosynthesis, have the advantage that they can be delivered directly to glycosyltransferases to function as surrogate substrates. This process, termed "biosynthetic incorporation," takes advantage of the properties of bacterial glycosyltransferase: they are selective for the products they generate yet promiscuous in their donor preferences. We describe how this strategy can be implemented to label arabinofuranose-containing glycans on the surface of mycobacterial cells. We anticipate that this platform can be expanded to develop chemoselective labeling agents for other important bacterial monosaccharides.
Collapse
Affiliation(s)
- Victoria M Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daria E Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
12
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
13
|
Abstract
Bioorthogonal chemistry is a set of methods using the chemistry of non-native functional groups to explore and understand biology in living organisms. In this review, we summarize the most common reactions used in bioorthogonal methods, their relative advantages and disadvantages, and their frequency of occurrence in the published literature. We also briefly discuss some of the less common but potentially useful methods. We then analyze the bioorthogonal-related publications in the CAS Content Collection to determine how often different types of biomolecules such as proteins, carbohydrates, glycans, and lipids have been studied using bioorthogonal chemistry. The most prevalent biological and chemical methods for attaching bioorthogonal functional groups to these biomolecules are elaborated. We also analyze the publication volume related to different types of bioorthogonal applications in the CAS Content Collection. The use of bioorthogonal chemistry for imaging, identifying, and characterizing biomolecules and for delivering drugs to treat disease is discussed at length. Bioorthogonal chemistry for the surface attachment of proteins and in the use of modified carbohydrates is briefly noted. Finally, we summarize the state of the art in bioorthogonal chemistry and its current limitations and promise for its future productive use in chemistry and biology.
Collapse
Affiliation(s)
- Robert E Bird
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Steven A Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xiang Yu
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
14
|
Meng X, Boons GJ, Wösten MMSM, Wennekes T. Metabolic Labeling of Legionaminic Acid in Flagellin Glycosylation of Campylobacter jejuni Identifies Maf4 as a Putative Legionaminyl Transferase. Angew Chem Int Ed Engl 2021; 60:24811-24816. [PMID: 34519150 PMCID: PMC9298399 DOI: 10.1002/anie.202107181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni is the major human food‐borne pathogen. Its bipolar flagella are heavily O‐glycosylated with microbial sialic acids and essential for its motility and pathogenicity. However, both the glycosylation of flagella and the exact contribution of legionaminic acid (Leg) to flagellar activity is poorly understood. Herein, we report the development of a metabolic labeling method for Leg glycosylation on bacterial flagella with probes based on azide‐modified Leg precursors. The hereby azido‐Leg labeled flagellin could be detected by Western blot analysis and imaged on intact bacteria. Using the probes on C. jejuni and its isogenic maf4 mutant we also further substantiated the identification of Maf4 as a putative Leg glycosyltransferase. Further evidence was provided by UPLC–MS detection of labeled CMP‐Leg and an in silico model of Maf4. This method and the developed probes will facilitate the study of Leg glycosylation and the functional role of this modification in C. jejuni motility and invasiveness.
Collapse
Affiliation(s)
- Xianke Meng
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
15
|
Meng X, Boons G, Wösten MMSM, Wennekes T. Metabolic Labeling of Legionaminic Acid in Flagellin Glycosylation of
Campylobacter jejuni
Identifies Maf4 as a Putative Legionaminyl Transferase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianke Meng
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Complex Carbohydrate Research Center and Department of Chemistry University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Marc M. S. M. Wösten
- Department Biomolecular Health Sciences Utrecht University Yalelaan 1 3584 CL Utrecht The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
16
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
17
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|