1
|
Lu Y, Zhang X, Guan Z, Ji R, Peng F, Zhao C, Gao W, Gao F. Molecular pathogenesis of Cryptosporidium and advancements in therapeutic interventions. Parasite 2025; 32:7. [PMID: 39902829 PMCID: PMC11792522 DOI: 10.1051/parasite/2025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Cryptosporidiosis, caused by a Cryptosporidium infection, is a serious gastrointestinal disease commonly leading to diarrhea in humans. This disease poses a particular threat to infants, young children, and those with weakened immune systems. The treatment of cryptosporidiosis is challenging due to the current lack of an effective treatment or vaccine. Ongoing research is focused on understanding the molecular pathogenesis of Cryptosporidium and developing pharmacological treatments. In this review, we examine the signaling pathways activated by Cryptosporidium infection within the host and their role in protecting host epithelial cells. Additionally, we also review the research progress of chemotherapeutic targets against cryptosporidia-specific enzymes and anti-Cryptosporidium drugs (including Chinese and Western medicinal drugs), aiming at the development of more effective treatments for cryptosporidiosis.
Collapse
Affiliation(s)
- Yilong Lu
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Xiaoning Zhang
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Zhiyu Guan
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Rui Ji
- College of Traditional Chinese Medicine, Shandong Second Medical University Weifang China
| | - Fujun Peng
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Chunzhen Zhao
- College of Pharmacy, Shandong Second Medical University Weifang China
| | - Wei Gao
- College of Clinical Medicine, Shandong Second Medical University Weifang China
| | - Feng Gao
- College of Pharmacy, Shandong Second Medical University Weifang China
| |
Collapse
|
2
|
Waldron-Young E, Wijitrmektong W, Choi R, Whitman GR, Hulverson MA, Charania R, Keelaghan A, Li L, Srinual S, Nikhar S, McNamara CW, Love MS, Huerta L, Bakowski MA, Hu M, Van Voorhis WC, Mead JR, Cuny GD. Pyridopyrimidinones as a new chemotype of calcium dependent protein kinase 1 (CDPK1) inhibitors for Cryptosporidium. Mol Biochem Parasitol 2024; 260:111637. [PMID: 38901801 PMCID: PMC11629397 DOI: 10.1016/j.molbiopara.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The protozoan protein kinase calcium-dependent protein kinase 1 (CDPK1) has emerged as a potential therapeutic target for the treatment of cryptosporidiosis. A focused screen of known kinase inhibitors identified a pyridopyrimidinone as a new chemotype of Cryptosporidium parvum (Cp) CDPK1 inhibitors. Structural comparison of CpCDPK1 to two representative human kinases, RIPK2 and Src, revealed differences in the positioning of the αC-helix that was used in the design of a potent pyridopyrimidinone-based CpCDPK1 inhibitor 7 (a.k.a. UH15-16, IC50 = 10 nM), which blocked the growth of three C. parvum strains (EC50 = 12-40 nM) as well as C. hominis (EC50 = 85 nM) in HCT-8 host cells. Pharmacokinetic and tissue distribution analyses indicated that 7 had low systemic exposure after oral administration, but high gastrointestinal concentration, as well as good Caco-2 cell permeability. Finally, 7 demonstrated partial efficacy in an IL-12 knock-out mouse model of acute cryptosporidiosis.
Collapse
Affiliation(s)
- Elise Waldron-Young
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Wissarut Wijitrmektong
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Ryan Choi
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, United States
| | - Grant R Whitman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, United States
| | - Matthew A Hulverson
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, United States
| | - Raheela Charania
- Department of Pediatrics, Emory University and Children's Healthcare Organization of Atlanta, Atlanta, GA 30322, United States; Atlanta VA Medical Center, Decatur, GA 30033, United States
| | - Aidan Keelaghan
- Department of Pediatrics, Emory University and Children's Healthcare Organization of Atlanta, Atlanta, GA 30322, United States; Atlanta VA Medical Center, Decatur, GA 30033, United States
| | - Li Li
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Songpol Srinual
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Sameer Nikhar
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Case W McNamara
- Calibr-Skaggs Institute for Innovative Medicines, A division of The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Melissa S Love
- Calibr-Skaggs Institute for Innovative Medicines, A division of The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Lauren Huerta
- Calibr-Skaggs Institute for Innovative Medicines, A division of The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Malina A Bakowski
- Calibr-Skaggs Institute for Innovative Medicines, A division of The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ming Hu
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Wesley C Van Voorhis
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, United States
| | - Jan R Mead
- Department of Pediatrics, Emory University and Children's Healthcare Organization of Atlanta, Atlanta, GA 30322, United States; Atlanta VA Medical Center, Decatur, GA 30033, United States
| | - Gregory D Cuny
- Department of Pharmaceutical and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
3
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
4
|
Jiang H, Zhang X, Li X, Wang X, Zhang N, Gong P, Zhang X, Yu Y, Li J. Cryptosporidium parvum regulates HCT-8 cell autophagy to facilitate survival via inhibiting miR-26a and promoting miR-30a expression. Parasit Vectors 2022; 15:470. [PMID: 36522638 PMCID: PMC9756778 DOI: 10.1186/s13071-022-05606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cryptosporidium parvum is an important zoonotic parasite, which not only causes economic losses in animal husbandry but also harms human health. Due to the lack of effective measures for prevention and treatment, it is important to understand the pathogenesis and survival mechanism of C. parvum. Autophagy is an important mechanism of host cells against parasite infection through key regulatory factors such as microRNAs and MAPK pathways. However, the regulatory effect of C. parvum on autophagy has not been reported. Here, we demonstrated that C. parvum manipulated autophagy through host cellular miR-26a, miR-30a, ERK signaling and P38 signaling for parasite survival. METHODS The expression of Beclin1, p62, LC3, ERK and P38 was detected using western blotting in HCT-8 cells infected with C. parvum as well as treated with miR-26a-mimic, miR-30a-mimic, miR-26a-mimic or miR-30a-inhibitor post C. parvum infection. The qPCR was used to detect the expression of miR-26a and miR-30a and the number of C. parvum in HCT-8 cells. Besides, the accumulation of autophagosomes was examined using immunofluorescence. RESULTS The expression of Beclin1 and p62 was increased, whereas LC3 expression was increased initially at 0-8 h but decreased at 12 h and then increased again in C. parvum-infected cells. C. parvum inhibited miR-26a-mimic-induced miR-26a but promoted miR-30a-mimic-induced miR-30a expression. Suppressing miR-30a resulted in increased expression of LC3 and Beclin1. However, upregulation of miR-26a reduced ERK/P38 phosphorylation, and inhibiting ERK/P38 signaling promoted Beclin1 and LC3 while reducing p62 expression. Treatment with miR-26a-mimic, autophagy inducer or ERK/P38 signaling inhibitors reduced but treatment with autophagy inhibitor or miR-30a-mimic increased parasite number. CONCLUSIONS The study found that C. parvum could regulate autophagy by inhibiting miR-26a and promoting miR-30a expression to facilitate the proliferation of parasites. These results revealed a new mechanism for the interaction of C. parvum with host cells.
Collapse
Affiliation(s)
- Heng Jiang
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Xu Zhang
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Xin Li
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Xiaocen Wang
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Nan Zhang
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Pengtao Gong
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Xichen Zhang
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Yanhui Yu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Jianhua Li
- grid.64924.3d0000 0004 1760 5735State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| |
Collapse
|
5
|
Yang B, Wang D, Liu M, Wu X, Yin J, Zhu G. Host cells with transient overexpression of MDR1 as a novel in vitro model for evaluating on-target effect for activity against the epicellular Cryptosporidium parasite. J Antimicrob Chemother 2021; 77:124-134. [PMID: 34648615 DOI: 10.1093/jac/dkab369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To rapidly generate host cells with resistance to multiple compounds for differentiating drug action on parasite target or the host cell target (i.e. on-target or off-target effect) against the zoonotic enteric parasite Cryptosporidium parvum. METHODS Transient overexpression of a multidrug resistance protein 1 (MDR1) gene in host cells (HCT-8 cell line) was explored to increase drug tolerance of the host cells to selected anti-cryptosporidial leads. In vitro cytotoxicity and anti-cryptosporidial efficacy of selected compounds were evaluated on the parasite grown in WT parental and transiently transfected HCT-8 cells. The approach was based on the theory that, for an epicellular parasite receiving consistent exposure to compounds in culture medium, overexpressing MDR1 in HCT-8 cells would increase drug tolerance of host cells to selected compounds but would not affect the anti-cryptosporidial efficacy if the compounds acted solely on the parasite target and the drug action on host cell target played no role on the antiparasitic efficacy. RESULTS Six known anti-cryptosporidial leads were tested. Transient overexpression of MDR1 increased drug tolerance of HCT-8 cells on paclitaxel, doxorubicin HCl and vincristine sulphate (2.11- to 2.27-fold increase), but not on cyclosporin A, daunorubicin HCl and nitazoxanide. Increased drug tolerance in host cells had no effect on antiparasitic efficacy of paclitaxel, but affected that of doxorubicin HCl. CONCLUSIONS Data confirmed that, at efficacious concentrations, paclitaxel acted mainly on the parasite target, while doxorubicin might act on both parasite and host cell targets. This model can be employed for studying the action of additional anti-cryptosporidial leads, and adapted to studying drug action in other epicellular pathogens. The limitation of the model is that the anti-cryptosporidial leads/hits need to be MDR1 substrates.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dongqiang Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingxiao Liu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaodong Wu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jigang Yin
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Substantial progress has been made recently on the development of new therapeutics for cryptosporidiosis, an infection by the protozoan parasite Cryptosporidium that is associated with diarrhea, malnutrition, growth stunting, cognitive deficits, and oral vaccine failure in children living in low-resource settings. RECENT FINDINGS Various drug discovery approaches have generated promising lead candidates. The repurposed antimycobacterial drug clofazimine was tested in Malawian HIV patients with cryptosporidiosis but was ineffective. Target-based screens identified inhibitors of lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, methionyl-tRNA synthetase, and calcium-dependent protein kinase 1. Phenotypic screens led to discovery of a phosphatidylinositol 4-kinase inhibitor, the piperazine MMV665917, and the benzoxaborole AN7973. The relationship between pharmacokinetic properties and in-vivo efficacy is gradually emerging. A pathway to clinical trials, regulatory approval, and introduction has been proposed but additional work is needed to strengthen the route. SUMMARY Several lead compounds with potent activity in animal models and a favorable safety profile have been identified. A sustained effort will be required to advance at least one to clinical proof-of-concept studies. The demonstrated risk of resistance indicates multiple candidates should be advanced as potential components of a combination therapy.
Collapse
Affiliation(s)
- Melissa S. Love
- Calibr, a division of The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|