1
|
Dupouy B, Karpstein T, Häberli C, Cal M, Rottmann M, Mäser P, Keiser J, Elhabiri M, Davioud‐Charvet E. Synthesis of 1,2,3-Triazole-Methyl-Menadione Derivatives: Evaluation of Electrochemical and Antiparasitic Properties against two Blood-Dwelling Parasites. ChemMedChem 2025; 20:e202400731. [PMID: 39676716 PMCID: PMC11911304 DOI: 10.1002/cmdc.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
This study explores the synthesis and evaluation of novel 1,2,3-triazole-methyl-1,4-naphthoquinone hybrids, focusing on their electrochemical properties and antiparasitic efficacies against two human blood-dwelling parasites Plasmodium falciparum and Schistosoma mansoni. Using copper-catalyzed azide-alkyne cycloaddition (CuAAC), a well-established tool in click chemistry, two synthetic routes were assessed to develop α- and β-[triazole-methyl]-menadione derivatives. By optimizing the CuAAC reaction conditions, yields were significantly improved, reaching up to 94 % for key intermediates and resulting in the formation of a library of approximately 30 compounds. Biological evaluation of the compounds in antiparasitic drug assays demonstrated notable antischistosomal potencies, while no significant activity was observed for the same series against P. falciparum parasites. Electrochemical and 'benzylic' oxidation studies confirmed that the active 'benzoyl' metabolite responsible for the antiplasmodial activity of plasmodione cannot be generated. These findings highlight the potential of triazole-linked menadione hybrids as promising early candidates for antischistosomal drug development, and provides insights into structure-activity relationships crucial for future therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| | - Tanja Karpstein
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Cécile Häberli
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Monica Cal
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| | - Elisabeth Davioud‐Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| |
Collapse
|
2
|
Cesar-Rodo E, Dupouy B, Häberli C, Strub JM, Williams DL, Mäser P, Rottmann M, Keiser J, Lanfranchi DA, Davioud-Charvet E. Regioselective Synthesis of Potential Non-Quinonoid Prodrugs of Plasmodione: Antiparasitic Properties Against Two Hemoglobin-Feeding Parasites and Drug Metabolism Studies. Molecules 2024; 29:5268. [PMID: 39598657 PMCID: PMC11596610 DOI: 10.3390/molecules29225268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Ψ-1,4-naphthoquinones (Ψ-NQ) are non-quinoid compounds in which aromaticity-found in 1,4-naphthoquinones-is broken by the introduction of an angular methyl at C-4a or -8a. This series was designed to act as prodrugs of 1,4-naphthoquinones in an oxidative environment. Furthermore, from a medicinal chemistry point of view, the loss of planarity of the scaffold might lead to an improved solubility and circumvent the bad reputation of quinones in the pharmaceutical industry. In this work, we illustrated the concept by the synthesis of Ψ -plasmodione regioisomers as prodrugs of the antimalarial plasmodione. The presence of a chiral center introduces a new degree of freedom to be controlled by enantioselectivity and regioselectivity of the cycloaddition in the Diels-Alder reaction. The first strategy that was followed was based on the use of a chiral enantiopure sulfoxide to govern the stereoselective formation of (+)Ψ-NQ or (-)Ψ-NQ, depending on the chirality of the sulfoxide (R or S). New sulfinylquinones were synthesized but were found to be ineffective in undergoing cycloaddition with different dienes under a wide range of conditions (thermal, Lewis acid). The second strategy was based on the use of boronic acid-substituted benzoquinones as auxiliaries to control the regioselectivity. Using this methodology to prepare the (±)Ψ-NQ racemates, promising results (very fast cycloaddition time: ~2 h) were obtained with boronic acid-based quinones 25 and 27 in the presence of 1-methoxy-1,3-butadiene, to generate the 4a- and the 8a-Ψ-plasmodione regioisomers 1 and 2 (synthesized in six steps with a total yield of 10.5% and 4.1%, respectively. As the expected prodrug effect can only be revealed if the molecule undergoes an oxidation of the angular methyl, e.g., in blood-feeding parasites that digest hemoglobin from the host, the antimalarial and the antischistosomal properties of both (±)Ψ-NQ regioisomers were determined in drug assays with Plasmodium falciparum and Schistosoma mansoni. Metabolic studies under quasi-physiological conditions and LC-MS analyses were undertaken to reveal the generation of plasmodione from both the 4a- and the 8a-Ψ-plasmodione regioisomers.
Collapse
Affiliation(s)
- Elena Cesar-Rodo
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| | - Baptiste Dupouy
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC UMR 7178 CNRS, Université de Strasbourg, F-67087 Strasbourg, France
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA;
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Don Antoine Lanfranchi
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
3
|
Dupouy B, Donzel M, Roignant M, Charital S, Keumoe R, Yamaryo-Botté Y, Feckler A, Bundschuh M, Bordat Y, Rottmann M, Mäser P, Botté CY, Blandin SA, Besteiro S, Davioud-Charvet E. 3-Benzylmenadiones and their Heteroaromatic Analogues Target the Apicoplast of Apicomplexa Parasites: Synthesis and Bioimaging Studies. ACS Infect Dis 2024; 10:3553-3576. [PMID: 39327729 DOI: 10.1021/acsinfecdis.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The apicoplast is an essential organelle for the viability of apicomplexan parasites Plasmodium falciparum or Toxoplasma gondii, which has been proposed as a suitable drug target for the development of new antiplasmodial drug-candidates. Plasmodione, an antimalarial redox-active lead drug is active at low nM concentrations on several blood stages of Plasmodiumsuch as early rings and gametocytes. Nevertheless, its precise biological targets remain unknown. Here, we described the synthesis and the evaluation of new heteroaromatic analogues of plasmodione, active on asexual blood P. falciparum stages and T. gondii tachyzoites. Using a bioimaging-based analysis, we followed the morphological alterations of T. gondii tachyzoites and revealed a specific loss of the apicoplast upon drug treatment. Lipidomic and fluxomic analyses determined that drug treatment severely impacts apicoplast-hosted FASII activity in T. gondii tachyzoites, further supporting that the apicoplast is a primary target of plasmodione analogues. To follow the drug localization, "clickable" analogues of plasmodione were designed as tools for fluorescence imaging through a Cu(I)-catalyzed azide-alkyne cycloaddition reaction. Short-time incubation of two probes with P. falciparum trophozoites and T. gondii tachyzoites showed that the clicked products localize within, or in the vicinity of, the apicoplast of both Apicomplexa parasites. In P. falciparum, the fluorescence signal was also associated with the mitochondrion, suggesting that bioactivation and activity of plasmodione and related analogues are potentially associated with these two organelles in malaria parasites.
Collapse
Affiliation(s)
- Baptiste Dupouy
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| | - Maxime Donzel
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| | - Matthieu Roignant
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| | - Sarah Charital
- Apicolipid Team, Institut pour l'Avancée des Biosciences, CNRS UMR5309,INSERM U1209, Université Grenoble Alpes, Bat. Jean Roget, Domaine de la Merci, La Tronche F-38700, France
| | - Rodrigue Keumoe
- INSERM, CNRS, Université de Strasbourg, U1257/UPR9022, Mosquito Immune Responses IBMC, 2 Allée Konrad Roentgen, Strasbourg F-67000, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institut pour l'Avancée des Biosciences, CNRS UMR5309,INSERM U1209, Université Grenoble Alpes, Bat. Jean Roget, Domaine de la Merci, La Tronche F-38700, France
| | - Alexander Feckler
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences (iES), RPTU Kaiserslautern-Landau, Fortstrasse 7, Landau D-76829, Germany
| | - Mirco Bundschuh
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences (iES), RPTU Kaiserslautern-Landau, Fortstrasse 7, Landau D-76829, Germany
| | - Yann Bordat
- UMR5294 CNRS-Université de Montpellier, Laboratory of Pathogens and Host Immunity (LPHI), Place Eugène Bataillon, Bâtiment 24, CC 107, Montpellier cedex 5 F-34095, France
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil CH-4123, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil CH-4123, Switzerland
- University of Basel, Petersgraben 1, Basel CH-4001, Switzerland
| | - Cyrille Y Botté
- Apicolipid Team, Institut pour l'Avancée des Biosciences, CNRS UMR5309,INSERM U1209, Université Grenoble Alpes, Bat. Jean Roget, Domaine de la Merci, La Tronche F-38700, France
| | - Stéphanie A Blandin
- INSERM, CNRS, Université de Strasbourg, U1257/UPR9022, Mosquito Immune Responses IBMC, 2 Allée Konrad Roentgen, Strasbourg F-67000, France
| | - Sébastien Besteiro
- UMR5294 CNRS-Université de Montpellier, Laboratory of Pathogens and Host Immunity (LPHI), Place Eugène Bataillon, Bâtiment 24, CC 107, Montpellier cedex 5 F-34095, France
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| |
Collapse
|
4
|
Iacobucci I, Monaco V, Hovasse A, Dupouy B, Keumoe R, Cichocki B, Elhabiri M, Meunier B, Strub JM, Monti M, Cianférani S, Blandin SA, Schaeffer-Reiss C, Davioud-Charvet E. Proteomic Profiling of Antimalarial Plasmodione Using 3-Benz(o)ylmenadione Affinity-Based Probes. Chembiochem 2024; 25:e202400187. [PMID: 38639212 DOI: 10.1002/cbic.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Vittoria Monaco
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Rodrigue Keumoe
- Institut de Biologie Moléculaire et Cellulaire, INSERM U1257 - CNRS UPR9022 - Université de Strasbourg, 2, Allée Konrad Roentgen, -67084, Strasbourg, France
| | - Bogdan Cichocki
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette Cedex, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Stéphanie A Blandin
- Institut de Biologie Moléculaire et Cellulaire, INSERM U1257 - CNRS UPR9022 - Université de Strasbourg, 2, Allée Konrad Roentgen, -67084, Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| |
Collapse
|
5
|
Lesanavičius M, Seo D, Maurutytė G, Čėnas N. Redox Properties of Bacillus subtilis Ferredoxin:NADP + Oxidoreductase: Potentiometric Characteristics and Reactions with Pro-Oxidant Xenobiotics. Int J Mol Sci 2024; 25:5373. [PMID: 38791410 PMCID: PMC11121358 DOI: 10.3390/ijms25105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be -0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH• to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures.
Collapse
Affiliation(s)
- Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| | - Daisuke Seo
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Gintarė Maurutytė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| |
Collapse
|
6
|
Trometer N, Cichocki B, Chevalier Q, Pécourneau J, Strub JM, Hemmerlin A, Specht A, Davioud-Charvet E, Elhabiri M. Synthesis and Photochemical Properties of Fluorescent Metabolites Generated from Fluorinated Benzoylmenadiones in Living Cells. J Org Chem 2024; 89:2104-2126. [PMID: 37267444 DOI: 10.1021/acs.joc.3c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work describes the reactivity and properties of fluorinated derivatives (F-PD and F-PDO) of plasmodione (PD) and its metabolite, the plasmodione oxide (PDO). Introduction of a fluorine atom on the 2-methyl group markedly alters the redox properties of the 1,4-naphthoquinone electrophore, making the compound highly oxidizing and particularly photoreactive. A fruitful set of analytical methods (electrochemistry, absorption and emission spectrophotometry, and HRMS-ESI) have been used to highlight the products resulting from UV photoirradiation in the absence or presence of selected nucleophiles. With F-PDO and in the absence of nucleophile, photoreduction generates a highly reactive ortho-quinone methide (o-QM) capable of leading to the formation of a homodimer. In the presence of thiol nucleophiles such as β-mercaptoethanol, which was used as a model, o-QMs are continuously regenerated in sequential photoredox reactions generating mono- or disulfanylation products as well as various unreported sulfanyl products. Besides, these photoreduced adducts derived from F-PDO are characterized by a bright yellowish emission due to an excited-state intramolecular proton transfer (ESIPT) process between the dihydronapthoquinone and benzoyl units. In order to evidence the possibility of an intramolecular coupling of the o-QM intermediate, a synthetic route to the corresponding anthrones is described. Tautomerization of the targeted anthrones occurs and affords highly fluorescent stable hydroxyl-anthraquinones. Although probable to explain the intense visible fluorescence emission also observed in tobacco BY-2 cells used as a cellular model, these coupling products have never been observed during the photochemical reactions performed in this study. Our data suggest that the observed ESIPT-induced fluorescence most likely corresponds to the generation of alkylated products through reduction species, as demonstrated with the β-mercaptoethanol model. In conclusion, F-PDO thus acts as a novel (pro)-fluorescent probe for monitoring redox processes and protein alkylation in living cells.
Collapse
Affiliation(s)
- Nathan Trometer
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Bogdan Cichocki
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Quentin Chevalier
- Institut De Biologie Moléculaire Des Plantes, Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique-Université de Strasbourg, Strasbourg F-67084, France
| | - Jérémy Pécourneau
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), UMR7178 Université de Strasbourg-CNRS, IPHC, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Andréa Hemmerlin
- Institut De Biologie Moléculaire Des Plantes, Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique-Université de Strasbourg, Strasbourg F-67084, France
| | - Alexandre Specht
- Conception et Applications des Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS-Université de Strasbourg, 74 Route du Rhin, Illkirch 67401, France
| | - Elisabeth Davioud-Charvet
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
7
|
Vallières C, Golinelli-Cohen MP, Guittet O, Lepoivre M, Huang ME, Vernis L. Redox-Based Strategies against Infections by Eukaryotic Pathogens. Genes (Basel) 2023; 14:genes14040778. [PMID: 37107536 PMCID: PMC10138290 DOI: 10.3390/genes14040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory responses, and can eventually lead to cell death. Specifically, disrupting redox balance, essentially by increasing pro-oxidative molecules and favouring hyperoxidation, is a smart strategy to eliminate cells and has been used for cancer treatment, for example. Selectivity between cancer and normal cells thus appears crucial to avoid toxicity as much as possible. Redox-based approaches are also employed in the case of infectious diseases to tackle the pathogens specifically, with limited impacts on host cells. In this review, we focus on recent advances in redox-based strategies to fight eukaryotic pathogens, especially fungi and eukaryotic parasites. We report molecules recently described for causing or being associated with compromising redox homeostasis in pathogens and discuss therapeutic possibilities.
Collapse
Affiliation(s)
- Cindy Vallières
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Olivier Guittet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michel Lepoivre
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Meng-Er Huang
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Laurence Vernis
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Mitra A, Acharya K, Bhattacharya A. Evolutionary analysis of globin domains from kinetoplastids. Arch Microbiol 2022; 204:493. [PMID: 35841431 DOI: 10.1007/s00203-022-03107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Globin (Gb) domains function in sensing gaseous ligands like oxygen and nitric oxide. In recent years, Gb domain containing heme binding adenylate cyclases (OsAC or GbAC) emerged as significant modulator of Leishmania response to hypoxia and oxidative stress. During progression of life cycle stages, kinetoplastids experience altered condition in insect vectors or other hosts. Moreover, marked diversity in life style has been accounted among kinetoplastids. Distribution and abundance of Gb-domains vary between different groups of kinetoplastids. While in bodonoids, Gbs are not combined with any other functional domains, in trypanosomatids it is either fused with adenylate cyclase (AC) or oxidoreductase (OxR) domains. In salivarian trypanosomatids and Leishmania (Viannia) subtypes, no gene product featuring Gbs can be identified. In this context, evolution of Gb-domains in kinetoplastids was explored. GbOxR derived Gbs clustered with bacterial flavohemoglobins (fHb) including one fHb from Advenella, an endosymbiont of monoxeneous trypanosomatids. Codon adaptation and other evolutionary analysis suggested that OsAC (LmjF.28.0090), the solitary Gb-domain featuring gene product in Leishmania, was acquired via possible horizontal gene transfer. Substantial functional divergence was estimated between orthologues of genes encoding GbAC or GbOxR; an observation also reflected in structural alignment and heme-binding residue predictions. Orthologue-paralogue and synteny analysis indicated genomic reduction in GbOxR and GbAC loci for dixeneous trypanosomatids.
Collapse
Affiliation(s)
- Akash Mitra
- Department of Microbiology, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.,Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Mangalore, 575018, India
| | - Kusumita Acharya
- Department of Microbiology, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Arijit Bhattacharya
- Department of Microbiology, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
9
|
Thioredoxin Reductase-Type Ferredoxin: NADP+ Oxidoreductase of Rhodopseudomonas palustris: Potentiometric Characteristics and Reactions with Nonphysiological Oxidants. Antioxidants (Basel) 2022; 11:antiox11051000. [PMID: 35624864 PMCID: PMC9137726 DOI: 10.3390/antiox11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris ferredoxin:NADP+ oxidoreductase (RpFNR) belongs to a novel group of thioredoxin reductase-type FNRs with partly characterized redox properties. Based on the reactions of RpFNR with the 3-acetylpyridine adenine dinucleotide phosphate redox couple, we estimated the two-electron reduction midpoint potential of the FAD cofactor to be −0.285 V. 5-Deaza-FMN-sensitized photoreduction revealed −0.017 V separation of the redox potentials between the first and second electron transfer events. We examined the mechanism of oxidation of RpFNR by several different groups of nonphysiological electron acceptors. The kcat/Km values of quinones and aromatic N-oxides toward RpFNR increase with their single-electron reduction midpoint potential. The lower reactivity, mirroring their lower electron self-exchange rate, is also seen to have a similar trend for nitroaromatic compounds. A mixed single- and two-electron reduction was characteristic of quinones, with single-electron reduction accounting for 54% of the electron flux, whereas nitroaromatics were reduced exclusively via single-electron reduction. It is highly possible that the FADH· to FAD oxidation reaction is the rate-limiting step during the reoxidation of reduced FAD. The calculated electron transfer distances in the reaction with quinones and nitroaromatics were close to those of Anabaena and Plasmodium falciparum FNRs, thus demonstrating their similar “intrinsic” reactivity.
Collapse
|