1
|
Lin ZJ, Fang CY, Wang TSA. Natural and artificial siderophores: Iron-based applications and beyond. Curr Opin Chem Biol 2025; 87:102601. [PMID: 40412201 DOI: 10.1016/j.cbpa.2025.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
Siderophores are iron chelators secreted by microorganisms to scavenge iron from the environment. Natural siderophores have gained remarkable importance because their conjugates can be applied as antibiotics and diagnostic imaging agents. By utilizing the iron uptake system of microorganisms, functional molecules such as antibiotics or imaging agents can be delivered into cells. Notably, artificial siderophores have also been developed to increase stability and broaden metal chelating diversity. Various strategies, including backbone fine-tuning, artificial chelation moieties, and direct metal swapping, can be employed. Therefore, artificial siderophores can bind biorelated metals or radioactive isotopes, expanding their biological and medical applications. The aim of this review is to introduce recent advances in natural and artificial siderophore applications and highlight future challenges in this area of research.
Collapse
Affiliation(s)
- Zih-Jheng Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Cheng-Yu Fang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, ROC.
| |
Collapse
|
2
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
3
|
Wang TSA, Chen PL, Chen YCS, Chiu YW, Lin ZJ, Kao CY, Hung HM. Evaluation of the Stereochemistry of Staphyloferrin A for Developing Staphylococcus-Specific Targeting Conjugates. Chembiochem 2024; 25:e202400480. [PMID: 38965052 DOI: 10.1002/cbic.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacteria in the genus Staphylococcus are pathogenic and harmful to humans. Alarmingly, some Staphylococcus, such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have spread worldwide and become notoriously resistant to antibiotics, threatening and concerning public health. Hence, the development of new Staphylococcus-targeting diagnostic and therapeutic agents is urgent. Here, we chose the S. aureus-secreted siderophore staphyloferrin A (SA) as a guiding unit. We developed a series of Staphyloferrin A conjugates (SA conjugates) and showed the specific targeting ability to Staphylococcus bacteria. Furthermore, among the structural factors we evaluated, the stereo-chemistry of the amino acid backbone of SA conjugates is essential to efficiently target Staphylococci. Finally, we demonstrated that fluorescent Staphyloferrin A probes (SA-FL probes) could specifically target Staphylococci in complex bacterial mixtures.
Collapse
Affiliation(s)
- Tsung-Shing Andrew Wang
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Pin-Lung Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yi-Chen Sarah Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yu-Wei Chiu
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Zih-Jheng Lin
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Chih-Yao Kao
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Hsuan-Min Hung
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
4
|
Graßl F, Konrad MMB, Krüll J, Pezerovic A, Zähnle L, Burkovski A, Heinrich MR. Tuning the Polarity of Antibiotic-Cy5 Conjugates Enables Highly Selective Labeling of Binding Sites. Chemistry 2023; 29:e202301208. [PMID: 37247408 DOI: 10.1002/chem.202301208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant bacteria pose a major threat to global health, even as newly introduced antibiotics continue to lose their therapeutic value. Against this background, deeper insights into bacterial interaction with antibiotic drugs are urgently required, whereas fluorescently labeled drug conjugates can serve as highly valuable tools. Herein, the preparation and biological evaluation of 13 new fluorescent antibiotic-Cy5 dye conjugates is described, in which the tuning of the polarity of the Cy5 dye proved to be a key element to achieve highly favorable properties for various fields of application.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maike M B Konrad
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Azra Pezerovic
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Leon Zähnle
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Yi Z, Xu X, Meng X, Liu C, Zhou Q, Gong D, Zha Z. Emerging markers for antimicrobial resistance monitoring. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
7
|
Miranda RR, Parthasarathy A, Hudson AO. Exploration of Chemical Biology Approaches to Facilitate the Discovery and Development of Novel Antibiotics. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.845469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 2.8 million people worldwide are infected with bacteria that are deemed resistant to clinically relevant antibiotics. This accounts for 700,000 deaths every year and represents a major public health threat that has been on the rise for the past two decades. In contrast, the pace of antibiotic discovery to treat these resistant pathogens has significantly decreased. Most antibiotics are complex natural products that were isolated from soil microorganisms during the golden era of antibiotic discovery (1940s to 1960s) employing the “Waksman platform”. After the collapse of this discovery platform, other strategies and approaches emerged, including phenotype- or target-based screenings of large synthetic compound libraries. However, these methods have not resulted in the discovery and/or development of new drugs for clinical use in over 30 years. A better understanding of the structure and function of the molecular components that constitute the bacterial system is of paramount importance to design new strategies to tackle drug-resistant pathogens. Herein, we review the traditional approaches as well as novel strategies to facilitate antibiotic discovery that are chemical biology-focused. These include the design and application of chemical probes that can undergo bioorthogonal reactions, such as copper (I)-catalyzed azide-alkyne cycloadditions (CuAAC). By specifically interacting with bacterial proteins or being incorporated in the microorganism’s metabolism, chemical probes are powerful tools in drug discovery that can help uncover new drug targets and investigate the mechanisms of action and resistance of new antibacterial leads.
Collapse
|
8
|
Acharya Y, Dhanda G, Sarkar P, Haldar J. Pursuit of next-generation glycopeptides: a journey with vancomycin. Chem Commun (Camb) 2022; 58:1881-1897. [PMID: 35043130 DOI: 10.1039/d1cc06635h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vancomycin, a blockbuster antibiotic of the glycopeptide class, has been a life-saving therapeutic against multidrug-resistant Gram-positive infections. The emergence of glycopeptide resistance has however enunciated the need to develop credible alternatives with potent activity against vancomycin-resistant bacteria. Medicinal chemistry has responded to this challenge through various strategies, one of them being the development of semisynthetic analogues. Many groups, including ours, have been contributing towards the development of semisynthetic vancomycin analogues to tackle vancomycin-resistant bacteria. In this feature article, we have discussed our research contribution to the field of glycopeptides, which includes our strategies and designs of vancomycin analogues incorporating multimodal mechanisms of action. The strategies discussed here, such as conferring membrane activity, enhanced binding to target, multivalency, etc. involve semisynthetic modifications to vancomycin at the carboxy terminal and the amino group of the vancosamine sugar of vancomycin, to develop novel analogues. These analogues have demonstrated their superior efficacy in tackling the inherited forms of vancomycin resistance in Gram-positive and Gram-negative bacteria, including highly drug-resistant strains. More importantly, these analogues also possess the ability to tackle various non-inherited forms of bacterial resistance, such as metabolically dormant stationary-phase and persister cells, bacterial biofilms, and intracellular pathogens. Our derivatives also display superior pharmacokinetics, and less propensity for resistance development, owing to their different modes of action. Through this feature article, we present to the reader a concise picture of the multitude of approaches that can be used to tackle different types of resistance through semisynthetic modifications to vancomycin. We have also highlighted the challenges and lacunae in the field, and potential directions which future research can explore.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India. .,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
9
|
Wang Z, Xing B. Small-molecule fluorescent probes: big future for specific bacterial labeling and infection detection. Chem Commun (Camb) 2021; 58:155-170. [PMID: 34882159 DOI: 10.1039/d1cc05531c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections remain a global healthcare problem that is particularly attributed to the spread of antibiotic resistance and the evolving pathogenicity. Accurate and swift approaches for infection diagnosis are urgently needed to facilitate antibiotic stewardship and effective medical treatment. Direct optical imaging for specific bacterial labeling and infection detection offers an attractive prospect of precisely monitoring the infectious disease status and therapeutic response in real time. This feature article focuses on the recent advances of small-molecule probes developed for fluorescent imaging of bacteria and infection, which covers the probe design, responsive mechanisms and representative applications. In addition, the perspective and challenges to advance small-molecule fluorescent probes in the field of rapid drug-resistant bacterial detection and clinical diagnosis of bacterial infections are discussed. We envision that the continuous advancement and clinical translations of such a technique will have a strong impact on future anti-infective medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
10
|
Li D, Chen P, Shi T, Mehmood A, Qiu J. HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to Human ACE2 by Molecular Simulation. Interdiscip Sci 2021; 13:766-777. [PMID: 34363600 PMCID: PMC8346780 DOI: 10.1007/s12539-021-00462-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus (COVID-19) pandemic is still spreading all over the world. As reported, angiotensin-converting enzyme-2 (ACE2) is a receptor of SARS-CoV-2 spike protein that initializes viral entry into host cells. Previously, the human defensin 5 (HD5) has been experimentally confirmed to be functional against the SARS-CoV-2. The present study proposes a human cathelicidin known as LL37 that strongly binds to the carboxypeptidase domain of human ACE2 compared to HD5. Therefore, LL37 bears a great potential to be tested as an anti-SARS-CoVD-2 peptide. We investigated the molecular interactions formed between the LL37 and ACE2 as well as HD5 and ACE2 tailed by their thermodynamic stability. The MM-PBSA and free energy landscape analysis outcomes confirmed its possible inhibitory effect against the SARS-CoV-2. The results obtained here could help propose a promising therapeutic strategy against the havoc caused by SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Peiqin Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jingfei Qiu
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|