1
|
Dong L, Sun L, Yang Y, Yuan L, Gao W, Yu D, Meng Q, Shi W, Wang Q, Li Y, Zhang Y, You X, Yao K. Non-antibiotic pharmaceutical phenylbutazone binding to MexR reduces the antibiotic susceptibility of Pseudomonas aeruginosa. Microbiol Res 2024; 288:127872. [PMID: 39146705 DOI: 10.1016/j.micres.2024.127872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of β-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.
Collapse
Affiliation(s)
- Limin Dong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lin Yuan
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Gao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Dan Yu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qing Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yue Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
2
|
Tian P, Li QQ, Guo MJ, Zhu YZ, Zhu RQ, Guo YQ, Yang Y, Liu YY, Yu L, Li YS, Li JB. Zidovudine in synergistic combination with nitrofurantoin or omadacycline: in vitro and in murine urinary tract or lung infection evaluation against multidrug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0034424. [PMID: 39194261 PMCID: PMC11459972 DOI: 10.1128/aac.00344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Limited treatment options and multidrug-resistant (MDR) Klebsiella pneumoniae present a significant therapeutic challenge, underscoring the need for novel approaches. Drug repurposing is a promising tool for augmenting the activity of many antibiotics. This study aimed to identify novel synergistic drug combinations against K. pneumoniae based on drug repurposing. We used the clinically isolated GN 172867 MDR strain of K. pneumoniae to determine the reversal resistance activity of zidovudine (AZT). The combined effects of AZT and various antibiotics, including nitrofurantoin (NIT) and omadacycline (OMC), were examined using the checkerboard method, growth curves, and crystal violet assays to assess biofilms. An in vitro combination activity testing was carried out in 12 isolates of K. pneumoniae. In vivo murine urinary tract and lung infection models were used to evaluate the therapeutic effects of AZT + NIT and AZT + OMC, respectively. The fractional inhibitory concentration index and growth curve demonstrated that AZT synergized with NIT or OMC against K. pneumoniae strains. In addition, AZT + NIT inhibited biofilm formation and cleared mature biofilms. In vivo, compared with untreated GN 172867-infected mice, AZT + NIT and AZT + OMC treatment decreased colony counts in multiple tissues (P < 0.05) and pathological scores in the bladder and kidneys (P < 0.05) and increased the survival rate by 60% (P < 0.05). This study evaluated the combination of AZT and antibiotics to treat drug-resistant K. pneumoniae infections and found novel drug combinations for the treatment of acute urinary tract infections. These findings suggest that AZT may exert significant anti-resistance activity.
Collapse
Affiliation(s)
- Ping Tian
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Qing-Qing Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ming-Juan Guo
- Department of Hepatology, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun-Zhu Zhu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Rong-Qing Zhu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Qin Guo
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yan-Yan Liu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Liang Yu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Sheng Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Jia-Bin Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Zhai YJ, Liu PY, Luo XW, Liang J, Sun YW, Cui XD, He DD, Pan YS, Wu H, Hu GZ. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0053023. [PMID: 37358428 PMCID: PMC10434024 DOI: 10.1128/spectrum.00530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.
Collapse
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pei-Yi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing-Wei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Liang
- Zhengzhou Animal Husbandry Bureau, Zhengzhou, China
| | - Ya-Wei Sun
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-Die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Guo M, Tian P, Li Q, Meng B, Ding Y, Liu Y, Li Y, Yu L, Li J. Gallium Nitrate Enhances Antimicrobial Activity of Colistin against Klebsiella pneumoniae by Inducing Reactive Oxygen Species Accumulation. Microbiol Spectr 2023; 11:e0033423. [PMID: 37272820 PMCID: PMC10434156 DOI: 10.1128/spectrum.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Klebsiella pneumoniae, a pathogen of critical clinical concern, urgently demands effective therapeutic options owing to its drug resistance. Polymyxins are increasingly regarded as a last-line therapeutic option for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. However, polymyxin resistance in K. pneumoniae is an emerging issue. Here, we report that gallium nitrate (GaNt), an antimicrobial candidate, exhibits a potentiating effect on colistin against MDR K. pneumoniae clinical isolates. To further confirm this, we investigated the efficacy of combined GaNt and colistin in vitro using spot dilution and rapid time-kill assays and growth curve inhibition tests and in vivo using a murine lung infection model. The results showed that GaNt significantly increased the antimicrobial activity of colistin, especially in the iron-limiting media. Mechanistic studies demonstrated that bacterial antioxidant activity was repressed by GaNt, as revealed by RNA sequencing (RNA-seq), leading to intracellular accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was enhanced in the presence of colistin. Therefore, oxidative stress induced by GaNt and colistin augments the colistin-mediated killing of wild-type cells, which can be abolished by dimethyl sulfoxide (DMSO), an effective ROS scavenger. Collectively, our study indicates that GaNt has a notable impact on the antimicrobial activity of colistin against K. pneumoniae, revealing the potential of GaNt as a novel colistin adjuvant to improve the treatment outcomes of bacterial infections. IMPORTANCE This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae. We found that GaNt functioned as an antibiotic adjuvant when combined with colistin by inhibiting the growth of multidrug-resistant K. pneumoniae. Our study provides insight into the use of an adjuvant to boost the antibiotic potential of colistin for treating infections caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Mingjuan Guo
- Department of Infectious Disease, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Tian
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingqing Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bao Meng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuting Ding
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Yasheng Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Disease, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Polymyxin B in Combination with Glycerol Monolaurate Exerts Synergistic Killing against Gram-Negative Pathogens. Pathogens 2022; 11:pathogens11080874. [PMID: 36014995 PMCID: PMC9413120 DOI: 10.3390/pathogens11080874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
The rapid emergence and spread of multidrug-resistant (MDR) bacterial pathogens pose a serious danger to worldwide human health, and resistance to last-resort drugs, such as polymyxins, is being increasingly detected in MDR Gram-negative pathogens. There is an urgent need to find and optimize combination therapies as an alternative therapeutic strategy, with a dry pipeline in novel antibiotic research and development. We found a monoester formed from the combination of lauric acid and glycerol, glycerol monolaurate (GML), possessing prominent antibacterial and anti-inflammatory activity. However, it is still unclear whether GML in combination could increase antimicrobial activity. Here, we reported that polymyxin B (PMNB) combined with GML exhibited a synergistic antimicrobial impact on Gram-negative strains in vitro, including clinical MDR isolates. This synergistic antimicrobial activity correlated with the destruction of bacterial cell structures, eradication of preformed biofilms, and increased reactive oxygen species (ROS) accumulation. We also showed that PMNB synergized with GML effectively eliminated pathogens from bacterial pneumonia caused by Klebsiella pneumoniae to rescue mice. Our research demonstrated that the PMNB and GML combination induced synergistic antimicrobial activity for Gram-negative pathogens in vitro and in vivo. These findings are of great importance for treating bacterial infections and managing the spread of infectious diseases.
Collapse
|
6
|
Chen H, Yang N, Yu L, Li J, Zhang H, Zheng Y, Xu M, Liu Y, Yang Y, Li J. Synergistic Microbicidal Effect of AUR and PEITC Against Staphylococcus aureus Skin Infection. Front Cell Infect Microbiol 2022; 12:927289. [PMID: 35774400 PMCID: PMC9237442 DOI: 10.3389/fcimb.2022.927289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Given the increasing prevalence of Staphylococcus aureus antibiotic resistance, there is an urgent need to repurpose approved drugs with known pharmacology and toxicology as an alternative therapeutic strategy. We have reported that the sustained monotherapy of auranofin (AUR) inevitably resulted in reduced susceptibility or even the emergence of resistance to AUR in S. aureus. However, whether drug combination could increase antibacterial activity while preventing AUR resistance is still unknown. Here, we focused on the important role of AUR combined with phenethyl isothiocyanate (PEITC) in skin infection and determined the synergistic antimicrobial effect on S. aureus by using checkerboard assays and time-kill kinetics analysis. This synergistic antimicrobial activity correlated with increased reactive oxygen species (ROS) generation, disruption of bacterial cell structure, and inhibition of biofilm formation. We also showed that AUR synergized with PEITC effectively restored the susceptibility to AUR via regulating thioredoxin reductase (TrxR) and rescued mice from subcutaneous abscesses through eliminating S. aureus pathogens, including methicillin-resistant S. aureus (MRSA). Collectively, our study indicated that the AUR and PEITC combination had a synergistic antimicrobial impact on S. aureus in vitro and in vivo. These results suggest that AUR and PEITC treatment may be a promising option for S. aureus infection.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Jiajia Li
- The Center for Scientific Research, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yahong Zheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengran Xu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yi Yang, ; Jiabin Li,
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- *Correspondence: Yi Yang, ; Jiabin Li,
| |
Collapse
|