1
|
Collet Q, Velard F, Laurent F, Josse J. Intracellular Staphylococcus aureus in osteoblasts and osteocytes and its impact on bone homeostasis during osteomyelitis. Bone 2025; 198:117536. [PMID: 40393553 DOI: 10.1016/j.bone.2025.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Osteomyelitis is a severe infection of bone tissue that can lead to bone loss and even osteonecrosis. This condition is mostly caused by Gram-positive bacteria, with Staphylococcus aureus being the most common etiological agent. Among the pathophysiological mechanisms involved in osteomyelitis, the ability of S. aureus to be internalized by osteoblasts or osteocytes and to survive within these cells, is particularly noteworthy. Infected osteoblasts and osteocytes not only serve as reservoirs in chronic cases of osteomyelitis but also play an active role in the osteoimmunology process, notably by producing mediators that promote the bone resorption activity of osteoclasts, thereby disrupting bone homeostasis. The present review explores both historical and recent literature on the internalization of S. aureus by osteoblasts and osteocytes, its intracellular behavior following internalization, and its mechanisms for inducing cell death. Additionally, it examines how S. aureus affects bone formation activity and promotes the production of inflammatory and pro-osteoclastic mediators. This review aims to highlight the limitations of current findings and outline key questions for future investigations.
Collapse
Affiliation(s)
- Quentin Collet
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.
| | | | - Frédéric Laurent
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| |
Collapse
|
2
|
Chen X, Wang HY, Yu L, Liu JQ, Sun H. Correlation of multiple peripheral blood parameters with metastasis and invasion of papillary thyroid cancer: a retrospective cohort study. Endocrine 2025:10.1007/s12020-025-04194-y. [PMID: 40025307 DOI: 10.1007/s12020-025-04194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Papillary thyroid cancer (PTC) progression is characterized by lymph node metastasis and thyroid capsular invasion. This study aimed to identify high-risk PTC populations for these events based on peripheral blood test parameters and to determine the associated factors. METHODS This retrospective study analyzed data from 4557 PTC patients. Principal component analysis (PCA) and cluster analysis were performed on 45 peripheral blood test results. High- and low-risk clusters were defined based on metastasis and invasion prevalence. Univariate and multivariate analyses identified parameters significantly differentiating the clusters, examining their association with tumor progression. RESULTS Preoperative blood tests stratified patients into two distinct clusters. Cluster 0 demonstrated significantly higher rates of metastasis and invasion than Cluster 1, defining it as the high-risk group. PCA identified four principal components significantly differentiating the clusters. Analysis of these components revealed key peripheral blood parameters. Multivariable logistic regression identified six parameters associated with increased risk of Cluster 0: alanine aminotransferase, free triiodothyronine, thrombin time, hemoglobin, hematocrit, and leukocyte count. Conversely, aspartate aminotransferase and neutrophil count were associated with decreased risk. CONCLUSION These findings suggest that peripheral blood parameters may provide insights into the progression of thyroid tumors and highlight potential avenues for exploring the underlying mechanisms of PTC. However, given the retrospective nature of this study and the potential for selection bias, further prospective studies are necessary to validate these results and confirm their predictive value in clinical practice.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Medical Clinical Research Center for Diabetes and Metabolic Diseases, Wuhan, China
| | - Han-Yu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Medical Clinical Research Center for Diabetes and Metabolic Diseases, Wuhan, China
| | - Lu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Medical Clinical Research Center for Diabetes and Metabolic Diseases, Wuhan, China
| | - Jia-Qi Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Medical Clinical Research Center for Diabetes and Metabolic Diseases, Wuhan, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Medical Clinical Research Center for Diabetes and Metabolic Diseases, Wuhan, China.
| |
Collapse
|
3
|
Xia X, Yang Q, Han X, Du Y, Guo S, Hua M, Fang F, Ma Z, Ma H, Yuan H, Tian W, Ding Z, Duan Y, Huo Q, Li Y. Explore on the Mechanism of miRNA-146a/TAB1 in the Regulation of Cellular Apoptosis and Inflammation in Ulcerative Colitis Based on NF-κB Pathway. Curr Mol Med 2025; 25:330-342. [PMID: 38347777 DOI: 10.2174/0115665240273807231122052445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 05/01/2025]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic non-specific inflammatory disease of the rectum and colon with unknown etiology. A growing number of evidence suggest that the pathogenesis of UC is related to excessive apoptosis and production of inflammatory cytokines. However, the functions and molecular mechanisms associated with UC remain unclear. MATERIALS AND METHODS The in vivo and in vitro models of UC were established in this study. MiRNA or gene expression was measured by qRT-PCR assay. ELISA, CCK-8, TUNEL, and flow cytometry assays were applied for analyzing cellular functions. The interactions between miR-146a and TAB1 were verified by luciferase reporter and miRNA pull-down assays. RESULTS MiR-146a was obviously increased in UC patients, DSS-induced colitis mice, and TNF-α-induced YAMC cells, when compared to the corresponding controls. MiR- 146a knockdown inhibited the inflammatory response and apoptosis in DSS-induced colitis mice and TNF-α-induced YAMC cells. Mechanistically, we found that TAB1 was the target of miR-146a and miR-146a knockdown suppressed the activation of NF-κB pathway in UC. More importantly, TAB1 could overturn the inhibitory effect of antagomiR-146a on cell apoptosis and inflammation in UC. CONCLUSION MiR-146a knockdown inhibited cell apoptosis and inflammation via targeting TAB1 and suppressing NF-κB pathway, suggesting that miR-146a may be a new therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Xiaoying Xia
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Qian Yang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Xue Han
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Yulin Du
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Shujun Guo
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Mengqing Hua
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Fang Fang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Zhigang Ma
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Hua Ma
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Hui Yuan
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Wenjing Tian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Zebang Ding
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Yanan Duan
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Qi Huo
- Department of Medical Oncology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu 233030, China
| | - Yao Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
4
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Giannasi C, Cadelano F, Della Morte E, Baserga C, Mazzucato C, Niada S, Baj A. Unlocking the Therapeutic Potential of Adipose-Derived Stem Cell Secretome in Oral and Maxillofacial Medicine: A Composition-Based Perspective. BIOLOGY 2024; 13:1016. [PMID: 39765683 PMCID: PMC11673083 DOI: 10.3390/biology13121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer its potential applications in this medical field. First, a review of the literature confirmed the presence of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells. This list was then analyzed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) software, revealing 844 enriched biological processes. From these, key processes were categorized into three major clinical application areas: immunoregulation (73 factors), bone regeneration (13 factors), and wound healing and soft tissue regeneration (27 factors), with several factors relevant to more than one area. The most relevant molecules were discussed in the context of existing literature to explore their therapeutic potential based on available evidence. Among these, TGFB1, IL10, and CSF2 have been shown to modulate immune and inflammatory responses, while OPG, IL6, HGF, and TIMP1 contribute to bone regeneration and tissue repair. Although the ADSC secretome holds great promise in oral and maxillofacial medicine, further research is needed to optimize its application and validate its clinical efficacy.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Elena Della Morte
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Baserga
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Mazzucato
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Alessandro Baj
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| |
Collapse
|
6
|
Lyu X, Wu H, Chen Y, Sun Y, Cai X, Li S, Lin Y. A Multifunctional Nanocomplex as miRNA/Antibiotic Co-Delivery System Based on Tetrahedral Framework DNA: Application to Infected Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406629. [PMID: 39279370 DOI: 10.1002/smll.202406629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
Infected wounds are a complex disease involving bacterial infections and dysregulated inflammation. However, current research has mostly focused on bacterial inhibition rather than on inflammation. Thus, combined therapeutic strategies with anti-bacterial and anti-inflammation efficacies are urgently needed. Antibiotics are the main treatment strategy for infections. However, the excessive use of antibiotics throughout the body can cause serious side effects. In addition, miRNA-based therapeutics are superior for the treatment of wounds, but their rapid degradation and poor cellular uptake limit their clinical application. Tetrahedral framework DNA (tFNA) is an ideal drug delivery system owing to its excellent stability and remarkable transport ability. Herein, a novel multi-functional miRNA and antibiotic co-delivery system based on tFNA is presented for the first time, called B/L. B/L has heightened resistance to serum and excellent codelivery ability. After transdermal administration, B/L can specifically target TNF receptor-associated factor 6(TRAF6) and IL-1receptor-associated kinase 1(IRAK1), thereby regulating nuclear factor kappa-B (NF-𝜿B) and thus effectively reducing inflammation and promoting the healing of infected wounds. This novel multi-functional co-delivery system provides a versatile, simple, biocompatible, and powerful platform for the personalized and combined treatment of multiple diseases.
Collapse
Affiliation(s)
- Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Liu H, Deng H, Huang H, Cao J, Wang X, Zhou Z, Zhong Z, Chen D, Peng G. Canine mesenchymal stem cell-derived exosomes attenuate renal ischemia-reperfusion injury through miR-146a-regulated macrophage polarization. Front Vet Sci 2024; 11:1456855. [PMID: 39315083 PMCID: PMC11417097 DOI: 10.3389/fvets.2024.1456855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction The most common factor leading to renal failure or death is renal IR (ischemia-reperfusion). Studies have shown that mesenchymal stem cells (MSCs) and their exosomes have potential therapeutic effects for IR injury by inhibiting M1 macrophage polarization and inflammation. In this study, the protective effect and anti-inflammatory mechanism of adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) after renal IR were investigated. Method Initially, ADMSC-Exos were intravenously injected into IR experimental beagles, and the subsequent assessment focused on inflammatory damage and macrophage phenotype. Furthermore, an in vitro inflammatory model was established by inducing DH82 cells with LPS. The impact on inflammation and macrophage phenotype was then evaluated using ADMSC and regulatory miR-146a. Results Following the administration of ADMSC-Exos in IR canines, a shift from M1 to M2 macrophage polarization was observed. Similarly, in vitro experiments demonstrated that ADMSC-Exos enhanced the transformation of LPS-induced macrophages from M1 to M2 type. Notably, the promotion of macrophage polarization by ADMSC-Exos was found to be attenuated upon the inhibition of miR-146a in ADMSC-Exos. Conclusion These findings suggest that miR-146a plays a significant role in facilitating the transition of LPS-induced macrophages from M1 to M2 phenotype. As a result, the modulation of macrophage polarization by ADMSC-Exos is achieved via the encapsulation and conveyance of miR-146a, leading to diminished infiltration of inflammatory cells in renal tissue and mitigation of the inflammatory reaction following canine renal IR.
Collapse
Affiliation(s)
- HaiFeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiahui Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Wang R, Wu N, Zhan D, Chen F. Naringin exerts antibacterial and anti-inflammatory effects on mice with Staphylococcus aureus-induced osteomyelitis. J Biochem Mol Toxicol 2024; 38:e23753. [PMID: 38923626 DOI: 10.1002/jbt.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Osteomyelitis is an invasive bone infection that can lead to severe pain and even disability, posing a challenge for orthopedic surgery. Naringin can reduce bone-related inflammatory conditions. This study aimed to elucidate the function and mechanism of naringin in a Staphylococcus aureus-induced mouse model of osteomyelitis. Femurs of S. aureus-infected mice were collected after naringin administration and subjected to microcomputed tomography to analyze cortical bone destruction and bone loss. Bacterial growth in femurs was also assessed. Proinflammatory cytokine levels in mouse femurs were measured using enzyme-linked immunosorbent assays. Pathological changes and bone resorption were analyzed using hematoxylin and eosin staining and tartrate-resistant acid phosphatase staining, respectively. Quantitative reverse transcription polymerase chain reaction and western blot analysis were used to quantify the messenger RNA and protein expression of osteogenic differentiation-associated genes in the femurs. The viability of human bone marrow-derived stem cells (hBMSCs) was determined using cell counting kit-8. Alizarin Red S staining and alkaline phosphatase staining were performed to assess the formation of mineralization nodules and bone formation in vitro. Notch signaling-related protein levels in femur tissues and hBMSCs were assessed using western blot analysis. Experimental results revealed that naringin alleviated S. aureus-induced cortical bone destruction and bone loss in mice by increasing the bone volume/total volume ratio. Naringin suppressed S. aureus-induced bacterial growth and inflammation in femurs. Moreover, it alleviated histopathological changes, inhibited bone resorption, and increased the expression of osteogenic markers in osteomyelitic mice. It increased the viability of hBMSCs and promoted their differentiation and bone mineralization in vitro. Furthermore, naringin activated Notch signaling by upregulating the protein levels of Notch1, Jagged1, and Hes1 in the femurs of model mice and S. aureus-stimulated hBMSCs. In conclusion, naringin reduces bacterial growth, inflammation, and bone resorption while upregulating the expression of osteogenic markers in S. aureus-infected mice and hBMSCs by activating Notch signaling.
Collapse
Affiliation(s)
- Rong Wang
- Department of Clinical Laboratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - NongXin Wu
- Department of Orthopedics, Xiangyang Central HospitaI, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Dong'ang Zhan
- Department of Hospital Infection Management Office, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fengwen Chen
- Department of Orthopedics, Xiangyang Central HospitaI, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
9
|
Chen F, Liu J, Liu K, Tian L, Li X, Zhu X, Chen X, Zhang X. Osteo-immunomodulatory effects of macrophage-derived extracellular vesicles treated with biphasic calcium phosphate ceramics on bone regeneration. Biomed Mater 2024; 19:045025. [PMID: 38815599 DOI: 10.1088/1748-605x/ad5242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Literature on osteoimmunology has demonstrated that macrophages have a great influence on biomaterial-induced bone formation. However, there are almost no reports clarifying the osteo-immunomodulatory capacity of macrophage-derived extracellular vesicles (EVs). This study comprehensively investigated the effects of EVs derived from macrophages treated with biphasic calcium phosphate (BCP) ceramics (BEVs) on vital events associated with BCP-induced bone formation such as immune response, angiogenesis, and osteogenesis. It was found that compared with EVs derived from macrophages alone (control, CEVs), BEVs preferentially promoted macrophage polarization towards a wound-healing M2 phenotype, enhanced migration, angiogenic differentiation, and tube formation of human umbilical vein endothelial cells, and induced osteogenic differentiation of mesenchymal stem cells. Analysis of 15 differentially expressed microRNAs (DEMs) related to immune, angiogenesis, and osteogenesis suggested that BEVs exhibited good immunomodulatory, pro-angiogenic, and pro-osteogenic abilities, which might be attributed to their specific miRNA cargos. These findings not only deepen our understanding of biomaterial-mediated osteoinduction, but also suggest that EVs derived from biomaterial-treated macrophages hold great promise as therapeutic agents with desired immunomodulatory capacity for bone regeneration.
Collapse
Affiliation(s)
- Fuying Chen
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Jiajun Liu
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Keting Liu
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Garley M, Nowak K, Jabłońska E. Neutrophil microRNAs. Biol Rev Camb Philos Soc 2024; 99:864-877. [PMID: 38148491 DOI: 10.1111/brv.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils are considered 'first-line defence' cells as they can be rapidly recruited to the site of the immune response. As key components of non-specific immune mechanisms, neutrophils use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to fight pathogens. Recently, immunoregulatory abilities of neutrophils associated with the secretion of several mediators, including cytokines and extracellular vesicles (EVs) containing, among other components, microRNAs (miRNAs), have also been reported. EVs are small structures released by cells into the extracellular space and are present in all body fluids. Microvesicles show the composition and status of the releasing cell, its physiological state, and pathological changes. Currently, EVs have gained immense scientific interest as they act as transporters of epigenetic information in intercellular communication. This review summarises findings from recent scientific reports that have evaluated the utility of miRNA molecules as biomarkers for effective diagnostics or even as start-points for new therapeutic strategies in neutrophil-mediated immune reactions. In addition, this review describes the current state of knowledge on miRNA molecules, which are endogenous regulators of gene expression besides being involved in the regulation of the immune response.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| |
Collapse
|
11
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Liu Y, Lu L, Yang H, Wu X, Luo X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li Q, Li X, Li W, Wang F, Sun Y, Gu L, Chen M, Li M. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122730. [PMID: 37838314 DOI: 10.1016/j.envpol.2023.122730] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Smoking is a serious global health issue. Cigarette smoking contains over 7000 different chemicals. The main harmful components include nicotine, acrolein, aromatic hydrocarbons and heavy metals, which play the key role for cigarette-induced inflammation and carcinogenesis. Growing evidences show that cigarette smoking and its components exert a remarkable impact on regulation of immunity and dysregulated immunity promotes inflammation and cancer. Therefore, this comprehensive and up-to-date review covers four interrelated topics, including cigarette smoking, inflammation, cancer and immune system. The known harmful chemicals from cigarette smoking were summarized. Importantly, we discussed in depth the impact of cigarette smoking on the formation of inflammatory or tumor microenvironment, primarily by affecting immune effector cells, such as macrophages, neutrophils, and T lymphocytes. Furthermore, the main molecular mechanisms by which cigarette smoking induces inflammation and cancer, including changes in epigenetics, DNA damage and others were further summarized. This article will contribute to a better understanding of the impact of cigarette smoking on inducing inflammation and cancer.
Collapse
Affiliation(s)
- Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyue Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Zheng P, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Latest Advances in the Application of Humanized Mouse Model for Staphylococcus aureus. J Infect Dis 2023; 228:800-809. [PMID: 37392466 DOI: 10.1093/infdis/jiad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important pathogen for humans and can cause a wide range of diseases, from mild skin infections, severe osteomyelitis to fatal pneumonia, sepsis, and septicemia. The mouse models have greatly facilitated the development of S. aureus studies. However, due to the substantial differences in immune system between mice and humans, the conventional mouse studies are not predictive of success in humans, in which case humanized mice may overcome this limitation to some extent. Humanized mice can be used to study the human-specific virulence factors produced by S. aureus and the mechanisms by which S. aureus interacts with humans. This review outlined the latest advances in humanized mouse models used in S. aureus studies.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
15
|
Gulati K, Ding C, Guo T, Guo H, Yu H, Liu Y. Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. Int J Oral Sci 2023; 15:15. [PMID: 36977679 PMCID: PMC10050545 DOI: 10.1038/s41368-023-00220-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Houzuo Guo
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huajie Yu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
16
|
Sharma AR, Lee YH, Lee SS. Recent advancements of miRNAs in the treatment of bone diseases and their delivery potential. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100150. [PMID: 36691422 PMCID: PMC9860349 DOI: 10.1016/j.crphar.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Advances in understanding miRNAs as endogenous posttranscriptional regulatory units have projected them as novel therapeutics for several untreatable diseases. miRNAs are endogenous non-coding small single-stranded RNA molecules (20-24 nucleotides) with specific gene regulatory functions like repression of mRNA translation by degrading mRNAs. Emerging evidence suggests the role of miRNAs in various stages of bone growth and development. Undoubtedly, due to their critical role in bone remodeling, miRNAs might be projected as a novel approach to treating bone-related diseases. However, the instability associated with miRNAs in their complex environment, such as degradation by nucleases, is a concern. Thus, recent attention is being paid to maintaining the miRNAs' safety and efficacy in the cells. Various efficient delivery systems and chemical modifications of miRNAs are being developed to make them a potential therapeutic option for bone diseases. Here, we have tried to recapitulate the recent advances in the role of miRNAs in bone disease, along with the potential delivery systems for their efficient delivery to the cells.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Corresponding author. Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, South Korea.
| | | | - Sang-Soo Lee
- Corresponding author. Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, South Korea.
| |
Collapse
|
17
|
Shen H, Jiang W, Yu Y, Feng Y, Zhang T, Liu Y, Guo L, Zhou N, Huang X. microRNA-146a mediates distraction osteogenesis via bone mesenchymal stem cell inflammatory response. Acta Histochem 2022; 124:151913. [PMID: 35759812 DOI: 10.1016/j.acthis.2022.151913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
Distraction osteogenesis (DO) is a widely used surgical technique to repair bone defects, partly owing to its high efficiency in inducing osteogenesis; however, the process of osteogenesis is complex, and the precise mechanism is still unclear. Among the factors identified for an effective DO procedure, well-controlled inflammation is essential. We aimed to explore how microRNA(miR)-146a, a negative regulator of inflammation, influences osteogenesis in DO. First, we established canine right mandibular DO and bone fracture models to evaluate the expression level of miR-146a in response to these procedures. Second, bone marrow mesenchymal stem cells (BMSCs) were isolated from healthy puppies and cultured with lipopolysaccharide (LPS) to observe how inflammation affects osteogenesis. Finally, the osteogenesis activity of BMSCs transfected with lentiviral vector either overexpressing (miR-146a-up) or inhibited for miR-146a expression was evaluated. miR-146a-up-transfected BMSCs were injected locally into the distraction gaps of the DO model canines. On days 42 and 56 post-surgery, the bone volume/tissue volume and bone mineral density values were evaluated via using micro-computed tomography, and newly formed tissues were harvested and evaluated via histological staining. The expression of miR-146a in both the DO canine model and LPS-stimulated BMSCs increased. Overexpression of miR-146a enhanced cell proliferation, migration, and osteogenic differentiation. Additionally, the newly formed callus was improved in canine mandibles injected with miR-146a-up-transfected BMSCs. In summary, miR-146a regulates mandibular DO by improving osteogenesis, and can serve as a potential target to shorten the therapy period of DO.
Collapse
Affiliation(s)
- Huijuan Shen
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Weidong Jiang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yangyang Yu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yuan Feng
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Tao Zhang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yan Liu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Lina Guo
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Nuo Zhou
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| | - Xuanping Huang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| |
Collapse
|