1
|
Chen F, Schiffer NE, Song J. Animal Models of Orthopedic Implant-Associated Infections and Revisions. ACS Biomater Sci Eng 2025; 11:2052-2068. [PMID: 40125564 PMCID: PMC11996597 DOI: 10.1021/acsbiomaterials.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Orthopedic implant-associated infections such as prosthetic joint infections (PJIs) lead to devastating complications for patients and impose significant financial burdens on the healthcare systems. Although the primary orthopedic implant associated infection rate is relatively low (0.3-9%), the reinfection rate after implant revisions can be as high as 20% to 40%. To evaluate novel therapeutic strategies for preventing and treating infections associated with primary and revision implants, it is essential to develop appropriate animal models that closely emulate clinical realities. Here we discuss existing animal models developed for orthopedic implant revision surgeries including small animal models in rats and mice, and larger animal models in rabbits, sheep, and mini-pigs. While larger animal models offer the advantage of more closely mimicking human surgical procedures, implant dimensions, and infection treatment protocols, rodent models are more cost-effective and better suited for screening experimental prophylaxes and therapeutics. Existing animal revision models have focused on primary infections established by Staphylococcal aureus (S. aureus) and revisions involving both one-stage and two-stage procedures. Further development of smaller animal implant revision models that implement more clinically relevant surgical procedures and recapitulate polymicrobial infections could facilitate the discovery and more rigorous evaluation of novel implant coating prophylaxes and therapeutics for reducing reinfection rates following implant revisions.
Collapse
Affiliation(s)
- Feiyang Chen
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Naomi E. Schiffer
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
2
|
Du W, Gong JS, Chen X, Wu Y, Yang Y, Zhu S, Zhang Y, Chen B, Liu YW, He ZH, Guan Z, Zhang Y, Wang ZX, Xie H. Ångstrom-scale silver particle-infused hydrogels eliminate orthopedic implant infections and support fracture healing. BIOMATERIALS TRANSLATIONAL 2025; 6:85-102. [PMID: 40313577 PMCID: PMC12041813 DOI: 10.12336/biomatertransl.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
Orthopedic implant-associated infections pose a significant clinical challenge, often requiring surgical intervention along with systemic antibiotic treatments. To address this issue, we developed a novel approach using Ångstrom-scale silver particles (AgÅPs) with broad-spectrum antibacterial properties. Specifically, we formulated a polyethylene glycol hydrogel infused with AgÅPs (Gel-AgÅPs) designed for treating fracture fixation infections. This novel hydrogel formulation is injectable, ensuring precise adherence to both the exposed tissue and fracture surfaces, thereby allowing the direct targeted action of AgÅPs at the infection site. The Gel-AgÅPs significantly reduced the infection caused by Escherichia coli (a model pathogen of orthopedic implant infection) in a murine femoral fracture model. Moreover, the Gel-AgÅPs-treated infected fractures healed completely within 6 weeks, exhibiting bone formation and mechanical strength comparable to those of uninfected fractures. Further analysis revealed a significant downregulation of local inflammatory response as evidenced by a lower expression of inflammatory markers in Gel-AgÅPs-treated fractures compared to untreated infected controls. Furthermore, Gel-AgÅPs exhibited a unique ability to inhibit osteoclast differentiation, a critical factor in infection-induced bone degradation, without impacting osteoblast activity. In conclusion, Gel-AgÅPs exerted a dual therapeutic effect by eradicating bacterial infection and mitigating inflammation-induced osteoclast activity, thereby expediting infected fracture healing. This innovative approach is a promising therapeutic alternative to conventional antibiotic treatments, potentially transforming the treatment landscape for orthopedic implant-associated infections.
Collapse
Affiliation(s)
- Wei Du
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
| | - Xia Chen
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Wu
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
| | - Yu Yang
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
| | - Sheng Zhu
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Yu Zhang
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Chen
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
| | - Ze-Hui He
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
| | - Zhe Guan
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
| | - Yan Zhang
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- State Key Laboratory of Powder Metallurgy Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| |
Collapse
|
3
|
Aparicio-Blanco J, López-Torres II, Alonso-Berenguel M, Torres-Suárez AI, Martín-Sabroso C. Local antimicrobial delivery systems for prophylaxis and treatment of periprosthetic traumatological infections. Eur J Pharm Sci 2025; 204:106940. [PMID: 39504811 DOI: 10.1016/j.ejps.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Infections associated with implants are the most serious complications in joint replacement surgeries and can jeopardize the functionality of orthopedic implants. Local antimicrobial delivery could enable antibiotics to attain concentrations above the minimum inhibitory concentration (MIC) threshold at the joint replacement site while preventing systemic side effects. Therefore, there is a dire need for the development of improved biomaterial-based delivery systems for local antibiotic administration in prosthetic infections. In this context, this review highlights the latest breakthroughs in the design of biomaterial-based formulations intended for the prophylaxis and treatment of prosthetic infections. Delivery systems for distinct forms of administration (i.e., direct intra-articular administration, loading into bone cements, coating of implant surfaces, or loading into hydrogels) are here comprehensively compiled with a focus on the design of microparticles and nanosystems for local antimicrobial administration and their impact on distinct in vitro and in vivo models of implant infections.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain
| | - Irene I López-Torres
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. De los Reyes Católicos, 2, 28040, Madrid, Spain
| | - María Alonso-Berenguel
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Ana I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain.
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Xian C, Liu Y, Zhou L, Ding T, Chen J, Wang T, Gao J, Hao X, Bi L. Optimal ultrasonic treatment frequency and duration parameters were used to detect the pathogenic bacteria of orthopedic implant-associated infection by ultrasonic oscillation. J Infect Chemother 2024; 30:1237-1243. [PMID: 38823678 DOI: 10.1016/j.jiac.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
INTRUDUCTON The most accurate method for detecting the pathogen of orthopedic implant-associated infections (OIAIs) is sonication fluid (SF). However, the frequency and duration of ultrasound significantly influence the number and activity of microorganisms. Currently, there is no consensus on the selection of these two parameters. Through this study, the choice of these two parameters is clarified. METHODS We established five ultrasonic groups (40kHz/10min, 40kHz/5min, 40 kHz/1min, 20kHz/5min, and 10kHz/5min) based on previous literature. OIAIs models were then developed and applied to ultrasound group treatment. Subsequently, we evaluated the efficiency of bacteria removal by conducting SEM and crystal violet staining. The number of live bacteria in the SF was determined using plate colony count and live/dead bacteria staining. RESULTS The results of crystal violet staining revealed that both the 40kHz/5min group and the 40kHz/10min group exhibited a significantly higher bacterial clearance rate compared to the other groups. However, there was no significant difference between the two groups. Additionally, the results of plate colony count and fluorescence staining of live and dead bacteria indicated that the number of live bacteria in the 40kHz/5min SF group was significantly higher than in the other groups. CONCLUSION 40kHz/5min ultrasound is the most beneficial for the detection of pathogenic bacteria on the surface of orthopedic implants.
Collapse
Affiliation(s)
- Chunxing Xian
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| | - Yanwu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Ting Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jingdi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Taoran Wang
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jiakai Gao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Xiaotian Hao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Long Bi
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| |
Collapse
|
5
|
Jiang D, Jin F, Zhang Y, Wu Y, Deng P, Wang X, Zhang X, Wu Y. Electrospun lignin-loaded artificial periosteum for bone regeneration and elimination of bacteria. Int J Biol Macromol 2024; 282:137149. [PMID: 39510467 DOI: 10.1016/j.ijbiomac.2024.137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Recently, the non-negligible role of the periosteum in bone repair has attracted the attention of researchers. In this study, poly(ε-caprolactone) (PCL)/lignin nano-fibrous membranes prepared by electrospinning are proposed as an artificial periosteum. Both in vitro and in vivo studies confirmed that PCL/lignin membranes have a pro-osteogenic effect. This effect was dependent on the lignin concentration, and there was an optimal concentration at which the membrane possessed the highest osteogenesis-potentiating activity among those tested in this study. In addition, the PCL/lignin membranes exhibited promising antibacterial properties against both E. coli and S. aureus, with high lignin concentrations corresponding to high-bactericidal activity. The prepared PCL/lignin membranes displayed promising osteogenic and antibacterial properties. With satisfactory hydrophilicity and mechanical properties, they hold great potential in serving as an artificial periosteum for bone tissue repair. This study provides both theoretical and laboratory evidence for the application of the renewable resource lignin in the repair of the periosteum and bone injuries.
Collapse
Affiliation(s)
- Dingyu Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Fanqi Jin
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Yilu Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Yujun Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Pingfu Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Xiyang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Xiaoshan Zhang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China.
| | - Yunqi Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China.
| |
Collapse
|
6
|
Zhou J, Wang H, Virtanen S, Witek L, Dong H, Thanassi D, Shen J, Yang YP, Yu C, Zhu D. Hybrid zinc oxide nanocoating on titanium implants: Controlled drug release for enhanced antibacterial and osteogenic performance in infectious conditions. Acta Biomater 2024; 189:589-604. [PMID: 39343288 DOI: 10.1016/j.actbio.2024.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Implant-associated bacterial infections are a primary cause of complications in orthopedic implants, and localized drug delivery represents an effective mitigation strategy. Drawing inspiration from the morphology of desiccated soil, our group has developed an advanced drug-delivery system augmented onto titanium (Ti) plates. This system integrates zinc oxide (ZnO) nanorod arrays with a vancomycin drug layer along with a protective Poly(lactic-co-glycolic acid) (PLGA) coating. The binding between the ZnO nanorods and the drug results in attached drug blocks, isolated by desiccation-like cracks, which are then encapsulated by PLGA to enable sustained drug release. Additionally, the release of zinc ions and the generation of reactive oxygen species (ROS) from the ZnO nanorods enhance the antibacterial efficacy. The antibacterial properties of ZnO nanorod-drug-PLGA system have been validated through both in vitro and in vivo studies. Comprehensive investigations were conducted on the impact of bacterial infections on bone defect regeneration and the role of this drug-delivery system in the healing process. Furthermore, the local immune response was analyzed and the immunomodulatory function of the system was demonstrated. Overall, the findings underscore the superior performance of the ZnO nanorod-drug-PLGA system as an efficient and safe approach to combat implant-associated bacterial infections. STATEMENT OF SIGNIFICANCE: Implant-associated bacterial infections pose a significant clinical challenge, particularly in orthopedic procedures. To address this, we developed an innovative ZnO nanorod-drug-PLGA system for local antibiotic delivery on conventional titanium implants. This system is biodegradable and features a unique desiccation-like structure that enables sustained drug release, along with the active substances released from the ZnO nanorods. In a rat calvarial defect model challenged with S. aureus, our system demonstrated remarkable antibacterial efficacy, significantly enhanced bone defect regeneration, and exhibited local immunomodulatory effects that support both infection control and osteogenesis. These breakthrough findings highlight the substantial clinical potential of this novel drug delivery system and introduce a transformative coating strategy to enhance the functionality of traditional metallic biomaterials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Hanbo Wang
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Sannakaisa Virtanen
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10010, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Hongzhou Dong
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 21000, China
| | - David Thanassi
- Department of Microbiology and Immunology, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - Cunjiang Yu
- Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
Ma Z, Zhao Y, Xu Z, Zhang Y, Han Y, Jiang H, Sun P, Feng W. 3D-printed porous titanium rods equipped with vancomycin-loaded hydrogels and polycaprolactone membranes for intelligent antibacterial drug release. Sci Rep 2024; 14:21749. [PMID: 39294268 PMCID: PMC11411058 DOI: 10.1038/s41598-024-72457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Implant-related infections pose significant challenges to orthopedic surgeries due to the high risk of severe complications. The widespread use of bioactive prostheses in joint replacements, featuring roughened surfaces and tight integration with the bone marrow cavity, has facilitated bacterial proliferation and complicated treatment. Developing antibacterial coatings for orthopedic implants has been a key research focus in recent years to address this critical issue. Researchers have designed coatings using various materials and antibacterial strategies. In this study, we fabricated 3D-printed porous titanium rods, incorporated vancomycin-loaded mPEG750-b-PCL2500 gel, and coated them with a PCL layer. We then evaluated the antibacterial efficacy through both in vitro and in vivo experiments. Our coating passively inhibits bacterial biofilm formation and actively controls antibiotic release in response to bacterial growth, providing a practical solution for proactive and sustained infection control. This study utilized 3D printing technology to produce porous titanium rod implants simulating bioactive joint prostheses. The porous structure of the titanium rods was used to load a thermoresponsive gel, mPEG750-b-PCL2500 (PEG: polyethylene glycol; PCL: polycaprolactone), serving as a novel drug delivery system carrying vancomycin for controlled antibiotic release. The assembly was then covered with a PCL membrane that inhibits bacterial biofilm formation early in infection and degrades when exposed to lipase solutions, mimicking enzymatic activity during bacterial infections. This setup provides infection-responsive protection and promotes drug release. We investigated the coating's controlled release, antibacterial capability, and biocompatibility through in vitro experiments. We established a Staphylococcus aureus infection model in rabbits, implanting titanium rods in the femoral medullary cavity. We evaluated the efficacy and safety of the composite coating in preventing implant-related infections using imaging, hematology, and pathology. In vitro experiments demonstrated that the PCL membrane stably protects encapsulated vancomycin during PBS immersion. The PCL membrane rapidly degraded at a lipase concentration of 0.2 mg/mL. The mPEG750-b-PCL2500 gel ensured stable and sustained vancomycin release, inhibiting bacterial growth. We investigated the antibacterial effect of the 3D-printed titanium material, coated with PCL and loaded with mPEG750-b-PCL2500 hydrogel, using a rabbit Staphylococcus aureus infection model. Imaging, hematology, and histopathology confirmed that our composite antibacterial coating exhibited excellent antibacterial effects and infection prevention, with good safety in trials. Our results indicate that the composite antibacterial coating effectively protects vancomycin in the hydrogel from premature release in the absence of bacterial infection. The outer PCL membrane inhibits bacterial growth and prevents biofilm formation. Upon contact with bacterial lipase, the PCL membrane rapidly degrades, releasing vancomycin for antibacterial action. The mPEG750-b-PCL2500 gel provides stable and sustained vancomycin release, prolonging its antibacterial effects. Our composite antibacterial coating demonstrates promising potential for clinical application.
Collapse
Affiliation(s)
- Zheru Ma
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Zhe Xu
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Yao Zhang
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
- Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yu Han
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Haozhuo Jiang
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Peng Sun
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China
| | - Wei Feng
- Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Hayashi K, Shimabukuro M, Zhang C, Taleb Alashkar AN, Kishida R, Tsuchiya A, Ishikawa K. Silver phosphate-modified carbonate apatite honeycomb scaffolds for anti-infective and pigmentation-free bone tissue engineering. Mater Today Bio 2024; 27:101161. [PMID: 39155941 PMCID: PMC11326936 DOI: 10.1016/j.mtbio.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Bone regeneration using synthetic materials has a high rate of surgical site infection, resulting in severe pain for patients and often requiring revision surgery. We propose Ag3PO4-based surface modification and structural control of scaffolds for preventing infections in bone regeneration. We demonstrated the differences in toxicity and antibacterial activity between in vitro and in vivo studies and determined the optimal silver content in terms of overall anti-infection effects, bone regeneration, toxicity, and pigmentation. A honeycomb structure comprising osteoconductive and resorbable carbonate apatite (CAp) was used as the base scaffold. CAp in the scaffold surface was partially replaced with different concentrations of Ag3PO4 via controlled dissolution-precipitation reactions in an AgNO3 solution. Both bone regeneration and infection prevention were achieved at 860-2300 ppm of silver. Despite the absence of Ag3PO4, honeycomb scaffolds were less susceptible to infection, even under conditions where infection occurs in clinically used three-dimensional porous scaffolds. Regardless of in vitro cytotoxicity at >5200 ppm of silver, increasing the silver content to 21,000 ppm did not adversely affect in vivo bone formation and scaffold resorption or cause acute systemic toxicity. Rather, bone formation was enhanced with 5200 ppm of silver. However, pigmentation was observed at that concentration. Hence, we concluded that the optimal silver concentration range is 860-2300 ppm for anti-infective and pigmentation-free bone regeneration. Bone regeneration was achieved via surface modification, resulting in the rapid release of silver ions immediately after implantation, followed by gradual release over several months. The scaffold structure may also aid in preventing bacterial growth within the scaffolds.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
10
|
Abdallah S, Hammoud SM, Al Balushi H, Loon MM, Salcedo YE, Hassan MMU, Cheema MJ, Kadri F, Shehryar A, Rehman A, Ibrahim M. Effective Surgical Site Infection Prevention Strategies for Diabetic Patients Undergoing Surgery: A Systematic Review. Cureus 2024; 16:e59849. [PMID: 38854286 PMCID: PMC11157141 DOI: 10.7759/cureus.59849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
Surgical site infections (SSIs) pose a significant clinical challenge, with heightened risks and severe consequences for diabetic patients undergoing surgical procedures. This systematic review aims to synthesize the current evidence on effective prevention strategies for mitigating SSI risk in this vulnerable population. From inception to March 2024, we comprehensively searched multiple electronic databases (PubMed, Medline, Embase, Cochrane Library, CINAHL) to identify relevant studies evaluating SSI prevention strategies in diabetic surgical patients. Our search strategy followed Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, utilizing a combination of keywords and Medical Subject Headings (MeSH) terms related to diabetes, surgical site infections, prevention strategies, and surgical procedures. Inclusion criteria focused on peer-reviewed clinical trials, randomized controlled trials, and meta-analyses published in English. The search yielded three studies meeting the eligibility criteria, subject to data extraction and qualitative synthesis. Key findings highlighted the efficacy of interventions such as optimized perioperative glycemic control, timely prophylactic antibiotic administration, and meticulous preoperative skin antisepsis in reducing SSI rates among diabetic surgical patients. The potential for personalized prevention approaches based on individual patient factors, such as diabetes type and surgical complexity, was explored. This systematic review underscores the importance of a multifaceted, evidence-based approach to SSI prevention in diabetic surgical patients, integrating strategies like glycemic control, antibiotic prophylaxis, and preoperative skin antisepsis. Furthermore, our findings suggest the potential benefits of personalized care pathways tailored to individual patient characteristics. Implementing these interventions requires interdisciplinary collaboration, adaptation to diverse healthcare settings, and patient engagement through culturally sensitive education initiatives. This comprehensive analysis informs clinical practice, fosters patient safety, and contributes to the global efforts to enhance surgical outcomes for this high-risk population.
Collapse
Affiliation(s)
| | - Sabri M Hammoud
- General Surgery, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Kuwait City, KWT
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vranceanu DM, Ungureanu E, Ionescu IC, Parau AC, Pruna V, Titorencu I, Badea M, Gălbău CȘ, Idomir M, Dinu M, (Dragomir) AV, Cotrut CM. In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titanium. Biomimetics (Basel) 2024; 9:244. [PMID: 38667255 PMCID: PMC11047857 DOI: 10.3390/biomimetics9040244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency.
Collapse
Affiliation(s)
- Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Ionut C. Ionescu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Anca C. Parau
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | - Mihaela Badea
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Cristina-Ștefania Gălbău
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Mihaela Idomir
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Alina Vladescu (Dragomir)
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| |
Collapse
|
12
|
Wang J, Ninan N, Nguyen NH, Nguyen MT, Sahu R, Nguyen TT, Mierczynska-Vasilev A, Vasilev K, Truong VK, Tang Y. Biomimetic Bacterium-like Particles Loaded with Aggregation-Induced Emission Photosensitizers as Plasma Coatings for Implant-Associated Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18449-18458. [PMID: 38578282 DOI: 10.1021/acsami.3c19484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Developing novel antibacterial strategies has become an urgent requisite to overcome the increasing pervasiveness of antimicrobial-resistant bacteria and the advent of biofilms. Aggregation-induced emission-based photosensitizers (AIE PSs) are promising candidates due to their unique photodynamic and photothermal properties. Bioengineering structure-inherent AIE PSs for developing thin film coatings is still an unexplored area in the field of nanoscience. We have adopted a synergistic approach combining plasma technology and AIE PS-based photodynamic therapy to develop coatings that can eradicate bacterial infections. Here, we loaded AIE PSs within biomimetic bacterium-like particles derived from a probiotic strain, Lactobacillus fermentum. These hybrid conjugates are then immobilized on polyoxazoline-coated substrates to develop a bioinspired coating to fight against implant-associated infections. These coatings could selectively kill Gram-positive and Gram-negative bacteria, but not damage mammalian cells. The mechanistic studies revealed that the coatings can generate reactive oxygen species that can rupture the bacterial cell membranes. The mRNA gene expression of proinflammatory cytokines confirmed that they can modulate infection-related immune responses. Thus, this nature-inspired design has opened a new avenue for the fabrication of a next-generation antibacterial coating to reduce infections and associated burdens.
Collapse
Affiliation(s)
- Jianzhong Wang
- Institute for NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Neethu Ninan
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Ngoc Huu Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Manh Tuong Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Resmarani Sahu
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Tien Thanh Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Agnieszka Mierczynska-Vasilev
- The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Glen Osmond, South Australia 5064, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| |
Collapse
|
13
|
Cai A, Yin H, Wang C, Chen Q, Song Y, Yin R, Yuan X, Kang H, Guo H. Bioactivity and antibacterial properties of zinc-doped Ta 2O 5nanorods on porous tantalum surface. Biomed Mater 2023; 18:065011. [PMID: 37729922 DOI: 10.1088/1748-605x/acfbd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
This paper focuses on the preparation of Zn2+-doped Ta2O5nanorods on porous tantalum using the hydrothermal method. Porous tantalum is widely used in biomedical materials due to its excellent elastic modulus and biological activity. Porous tantalum has an elastic modulus close to that of human bone, and its large specific surface area is conducive to promoting cell adhesion. Zinc is an important component of human bone, which not only has spectral bactericidal properties, but also has no cytotoxicity. The purpose of this study is to provide a theoretical basis for the surface modification of porous tantalum and to determine the best surface modification method. The surface structure of the sample was characterized by x-ray diffractometer, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and the Zn-doped Ta2O5nanorods are characterized by antibacterial test, MTT test, ICP and other methods. The sample has good antibacterial properties and no cytotoxicity. The results of this study have potential implications for the development of new and improved biomedical materials.
Collapse
Affiliation(s)
- Anqi Cai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hairong Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Qian Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yingxuan Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ruixue Yin
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xin Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Haoran Kang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hongwei Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
14
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
16
|
Yang K, Liu D, Teng R, Li C, Fan Z, Du J. An Antibacterial Polypeptide Coating Prepared by In Situ Enzymatic Polymerization for Preventing Delayed Infection of Implants. ACS Biomater Sci Eng 2023; 9:1900-1908. [PMID: 36877006 DOI: 10.1021/acsbiomaterials.3c00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Delayed implant-associated infection is an important challenge, as the treatment involves a high risk of implant replacement. Mussel-inspired antimicrobial coatings can be applied to coat a variety of implants in a facile way, but the adhesive 3,4-dihydroxyphenylalanine (DOPA) group is prone to oxidation. Therefore, an antibacterial polypeptide copolymer poly(Phe7-stat-Lys10)-b-polyTyr3 was designed to prepare the implant coating upon tyrosinase-induced enzymatic polymerization for preventing implant-associated infections. Both poly(Phe7-stat-Lys10) and polyTyr3 blocks have specific functions: the former provides intrinsic antibacterial activity with a low risk to induce antimicrobial resistance, and the latter is attachable to the surface of implants to rapidly generate an antibacterial coating by in situ injection of polypeptide copolymer since tyrosine could be oxidized to DOPA under catalyzation of skin tyrosinase. This polypeptide coating with excellent antibacterial effect and desirable biofilm inhibition activity is promising for broad applications in a multitude of biomedical materials to combat delayed infections.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Runxin Teng
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.,Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
17
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|
18
|
Nanotechnology in the Diagnosis and Treatment of Osteomyelitis. Pharmaceutics 2022; 14:pharmaceutics14081563. [PMID: 36015188 PMCID: PMC9412360 DOI: 10.3390/pharmaceutics14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infection remains one of the largest threats to global health. Among those infections that are especially troublesome, osteomyelitis, or inflammation of the bone, typically due to infection, is a particularly difficult condition to diagnose and treat. This difficulty stems not only from the biological complexities of opportunistic infections designed to avoid the onslaught of both the host immune system as well as exogenous antibiotics, but also from changes in the host vasculature and the heterogeneity of infectious presentations. While several groups have attempted to classify and stage osteomyelitis, controversy remains, often delaying diagnosis and treatment. Despite a host of preclinical treatment advances being incubated in academic and company research and development labs worldwide, clinical treatment strategies remain relatively stagnant, including surgical debridement and lengthy courses of intravenous antibiotics, both of which may compromise the overall health of the bone and the patient. This manuscript reviews the current methods for diagnosing and treating osteomyelitis and then contemplates the role that nanotechnology might play in the advancement of osteomyelitis treatment.
Collapse
|
19
|
Kaewmanee R, Wang F, Pan Y, Mei S, Meesane J, Li F, Wu Z, Wei J. Microporous surface containing flower-like molybdenum disulfide submicro-spheres of sulfonated polyimide with antibacterial effect and promoting bone regeneration and osteointegration. Biomater Sci 2022; 10:4243-4256. [PMID: 35762466 DOI: 10.1039/d2bm00622g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Implanted materials with both osteogenic and antibacterial functions are promising for facilitating osteointegration and preventing infection for orthopedic applications. In this work, we synthesized flower-like molybdenum disulfide (fMD) submicro-spheres containing nanosheets, which were incorporated onto the microporous surface of polyimide (PI) via concentrated sulfuric acid, suspending fMD contents of 5 wt% (SPM1) and 10 wt% (SPM2). Compared with sulfonated polyimide (SPM0), both SPM1 and SPM2 with microporous surfaces containing fMD exhibited nano-submicro-microporous surfaces, which improved the surface roughness, wettability, and surface energy. Due to there being more fMD submicro-spheres on the microporous surface, SPM2 revealed a better antibacterial effect than SPM1. In addition, compared with SPM1 and SPM0, SPM2 with more fMD significantly promoted rat bone marrow-derived stromal cell response in vitro. Moreover, SPM2 remarkably enhanced new bone formation and osteointegration in vivo. In summary, the combination of fMD with the microporous surface of SPM2 resulted in a nano-submicro-microporous surface with optimized surface performance, which possessed not only osteogenic bioactivity but also an antibacterial effect. As a bone implant, SPM2 with osteogenic and antibacterial functions may have enormous potential as a bone tissue substitute.
Collapse
Affiliation(s)
- Rames Kaewmanee
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Fan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yongkang Pan
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shiqi Mei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Fengqian Li
- Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
20
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|