1
|
Macleod SL, Super EH, Batt LJ, Yates E, Jones ST. Plate-Based High-Throughput Fluorescence Assay for Assessing Enveloped Virus Integrity. Biomacromolecules 2024; 25:4925-4933. [PMID: 39040021 PMCID: PMC11323024 DOI: 10.1021/acs.biomac.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Viruses are a considerable threat to global health and place major burdens on economies worldwide. Manufactured viruses are also being widely used as delivery agents to treat (gene therapies) or prevent diseases (vaccines). Therefore, it is vital to study and fully understand the infectious state of viruses. Current techniques used to study viruses are often slow or nonexistent, making the development of new techniques of paramount importance. Here we present a high-throughput and robust, cell-free plate-based assay (FAIRY: Fluorescence Assay for vIRal IntegritY), capable of differentiating intact from nonintact enveloped viruses, i.e, infectious from noninfectious. Using a thiazole orange-terminated polymer, a 99% increase in fluorescence was observed between treated (heat or virucide) and nontreated. The FAIRY assay allowed for the rapid determination of the infectivity of a range of enveloped viruses, highlighting its potential as a valuable tool for the study of viruses and interventions against them.
Collapse
Affiliation(s)
- Shannan-Leigh Macleod
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Elana H. Super
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Lauren J. Batt
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Eleanor Yates
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samuel T. Jones
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Trinh E, Batt LJ, Yue Q, Du R, Jones ST, Fielding LA. Bridging Flocculation of a Sterically Stabilized Cationic Latex as a Biosensor for the Detection of Microbial DNA after Amplification via PCR. Biomacromolecules 2024; 25:1629-1636. [PMID: 38361251 PMCID: PMC10934273 DOI: 10.1021/acs.biomac.3c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
There is a high demand for rapid, sensitive, and accurate detection methods for pathogens. This paper demonstrates a method of detecting the presence of amplified DNA from a range of pathogens associated with serious infections including Gram-negative bacteria, Gram-positive bacteria, and viruses. DNA is amplified using a polymerase chain reaction (PCR) and consequently detected using a sterically stabilized, cationic polymer latex. The DNA induces flocculation of this cationic latex, which consequently leads to rapid sedimentation and a visible change from a milky-white dispersion to one with a transparent supernatant, presenting a clear visible change, indicating the presence of amplified DNA. Specifically, a number of different pathogens were amplified using conventional or qPCR, including Staphylococcus aureus, Escherichia coli, and Herpes Simplex Virus (HSV-2). This method was demonstrated to detect the presence of bacteria in suspension concentrations greater than 380 CFU mL-1 and diagnose the presence of specific genomes through primer selection, as exemplified using methicillin resistant and methicillin susceptible Staphylococcus aureus. The versatility of this methodology was further demonstrated by showing that false positive results do not occur when a PCR of fungal DNA from C. albicans is conducted using bacterial universal primers.
Collapse
Affiliation(s)
- Elisabeth Trinh
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Lauren J. Batt
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Qi Yue
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Ruiling Du
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Samuel T. Jones
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- School
of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Zyryanov GV, Kopchuk DS, Kovalev IS, Santra S, Majee A, Ranu BC. Pillararenes as Promising Carriers for Drug Delivery. Int J Mol Sci 2023; 24:ijms24065167. [PMID: 36982244 PMCID: PMC10049520 DOI: 10.3390/ijms24065167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Since their discovery in 2008 by N. Ogoshi and co-authors, pillararenes (PAs) have become popular hosts for molecular recognition and supramolecular chemistry, as well as other practical applications. The most useful property of these fascinating macrocycles is their ability to accommodate reversibly guest molecules of various kinds, including drugs or drug-like molecules, in their highly ordered rigid cavity. The last two features of pillararenes are widely used in various pillararene-based molecular devices and machines, stimuli-responsive supramolecular/host-guest systems, porous/nonporous materials, organic-inorganic hybrid systems, catalysis, and, finally, drug delivery systems. In this review, the most representative and important results on using pillararenes for drug delivery systems for the last decade are presented.
Collapse
Affiliation(s)
- Grigory V Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Dmitry S Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Igor S Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Brindaban C Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|