1
|
Feng B, Hu H, Xiang J, Wu G, Zhu Z, Zhang G, Zhang J, Pan W, Zhang W, Li T, Wu S. Discovery of novel triphenylphosphonium conjugated pleuromutilin with enhanced anti-MRSA effect and broaden antibacterial spectrum. Eur J Med Chem 2025; 294:117731. [PMID: 40398156 DOI: 10.1016/j.ejmech.2025.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/23/2025]
Abstract
Pleuromutilin, a diterpene fungal metabolite, serves as a privileged scaffold for antibiotic discovery. Improving its antibacterial activity and broadening its spectrum remain the primary objectives in developing novel pleuromutilin derivatives. To obtain an ideal candidate, a series of pleuromutilin analogues conjugated to the triphenylphosphonium cation (TPP+) were designed and synthesized. Among them, compound a5 demonstrated enhanced anti-MRSA potency and a broadened antibacterial spectrum compared to valnemulin and lefamulin, both in vitro and in vivo. Mechanistic studies revealed that a5 disrupted bacterial membranes and biofilms by elevating intracellular ROS levels-a mechanism distincts from conventional pleuromutilins, which primarily target ribosomal proteins. These findings position a5 as a promising lead compound for developing next-generation broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Huabin Hu
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Jin Xiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guangxu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Kumari R, Saraogi I. Navigating Antibiotic Resistance in Gram-Negative Bacteria: Current Challenges and Emerging Therapeutic Strategies. Chemphyschem 2025; 26:e202401057. [PMID: 39970066 DOI: 10.1002/cphc.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Indexed: 02/21/2025]
Abstract
The rapid rise of antibiotic resistance poses a severe global health crisis, necessitating new approaches to counter this growing threat. The problem is exacerbated in Gram-negative bacterial pathogens as many antibiotics are unable to enter these cells owing to their unique additional outer membrane barrier. In this review, we discuss the challenges of targeting Gram-negative bacteria, including the complexity of the outer membrane, as well as the presence of efflux pumps and β-lactamases that contribute to resistance. We also review solutions proposed to facilitate the entry and accumulation of antibiotics in Gram-negative bacteria. These involve using existing antibiotics in combination with other inhibitors to attack the bacterial cell synergistically. We also highlight approaches to target Gram-negative pathogens via novel modes of action, providing new strategies to tackle antibiotic resistance.
Collapse
Affiliation(s)
- Reshma Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Tse MW, Zhu M, Peters B, Hamami E, Chen J, Davis KP, Nitz S, Weller J, Warrier T, Hunt DK, Morales Y, Kawate T, Gaulin JL, Come JH, Hernandez-Bird J, Huo W, Neisewander I, Yu X, Aceves-Salvador JA, Kiessling LL, Hung DT, Mecsas J, Aldridge BB, Isberg RR, Blainey PC. Large-scale combination screens reveal small-molecule sensitization of antibiotic-resistant gram-negative ESKAPE pathogens. Proc Natl Acad Sci U S A 2025; 122:e2402017122. [PMID: 40127266 PMCID: PMC12002207 DOI: 10.1073/pnas.2402017122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/27/2025] [Indexed: 03/26/2025] Open
Abstract
Antibiotic resistance, especially in multidrug-resistant ESKAPE pathogens, remains a worldwide problem. Combination antimicrobial therapies may be an important strategy to overcome resistance and broaden the spectrum of existing antibiotics. However, this strategy is limited by the ability to efficiently screen large combinatorial chemical spaces. Here, we deployed a high-throughput combinatorial screening platform, DropArray, to evaluate the interactions of over 30,000 compounds with up to 22 antibiotics and 6 strains of gram-negative ESKAPE pathogens, totaling to over 1.3 million unique strain-antibiotic-compound combinations. In this dataset, compounds more frequently exhibited synergy with known antibiotics than single-agent activity. We identified a compound, P2-56, and developed a more potent analog, P2-56-3, which potentiated rifampin (RIF) against antibiotic-resistant strains of Acinetobacter baumannii and Klebsiella pneumoniae. Using phenotypic assays, we showed P2-56-3 disrupts the outer membrane of A. baumannii. To identify pathways involved in the mechanism of synergy between P2-56-3 and RIF, we performed genetic screens in A. baumannii. CRISPRi-induced partial depletion of lipooligosaccharide transport genes (lptA-D, lptFG) resulted in hypersensitivity to P2-56-3/RIF treatment, demonstrating the genetic dependency of P2-56-3 activity and RIF sensitization on lpt genes in A. baumannii. Consistent with outer membrane homeostasis being an important determinant of P2-56-3/RIF tolerance, knockout of maintenance of lipid asymmetry complex genes and overexpression of certain resistance-nodulation-division efflux pumps-a phenotype associated with multidrug-resistance-resulted in hypersensitivity to P2-56-3. These findings demonstrate the immense scale of phenotypic antibiotic combination screens using DropArray and the potential for such approaches to discover new small molecule synergies against multidrug-resistant ESKAPE strains.
Collapse
Affiliation(s)
- Megan W. Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Benjamin Peters
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Julie Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Samuel Nitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY10065
| | - Juliane Weller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Wellcome Sanger Institute, Hinxton, Saffron WaldenCB10 1RQ, United Kingdom
| | - Thulasi Warrier
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Diana K. Hunt
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Tomohiko Kawate
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jeffrey L. Gaulin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Jon H. Come
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Tango Therapeutics, Boston, MA02215
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Isabelle Neisewander
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Xiao Yu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jose A. Aceves-Salvador
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Deborah T. Hung
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA02111
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| |
Collapse
|
4
|
Farkas E, McKay GA, Hu LT, Nekouei M, Ho P, Moreira W, Chan CC, Dam LC, Auclair K, Gruenheid S, Whyte L, Dedon P, Nguyen D. Bioluminescent Pseudomonas aeruginosa and Escherichia coli for whole-cell screening of antibacterial and adjuvant compounds. Sci Rep 2024; 14:31039. [PMID: 39730767 DOI: 10.1038/s41598-024-81926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli. We show that the bioluminescent strains have a large dynamic range that closely correlates with cell viability and is superior to conventional optical density (OD600) measurements, can detect dose-dependent antibacterial activity and be used for different drug discovery applications. We evaluated the assays' performance characteristics (signal to background ratio, signal window, Z' robust) and demonstrated their potential utility for antibiotic drug discovery in two examples. The P. aeruginosa bioluminescent reporter was used in a pilot screen of 960 repurposed compound libraries to identify adjuvants that potentiate the fluoroquinolone antibiotic ofloxacin. The E. coli bioluminescent reporter was used to test the antibacterial activity of bioactive bacterial supernatants and assist with bioassay-guided fractionation of the crude extracts.
Collapse
Affiliation(s)
- Eszter Farkas
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Geoffrey A McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Lin Tao Hu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mina Nekouei
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Peying Ho
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Wilfried Moreira
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
| | - Chia Ching Chan
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Peter Dedon
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dao Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Rachwalski K, Madden SJ, Ritchie N, French S, Bhando T, Girgis-Gabardo A, Tu M, Gordzevich R, Ives R, Guo AB, Johnson JW, Xu Y, Kapadia SB, Magolan J, Brown ED. A screen for cell envelope stress uncovers an inhibitor of prolipoprotein diacylglyceryl transferase, Lgt, in Escherichia coli. iScience 2024; 27:110894. [PMID: 39376497 PMCID: PMC11456916 DOI: 10.1016/j.isci.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The increasing prevalence of antibiotic resistance demands the discovery of antibacterial chemical scaffolds with unique mechanisms of action. Phenotypic screening approaches, such as the use of reporters for bacterial cell stress, offer promise to identify compounds while providing strong hypotheses for follow-on mechanism of action studies. From a collection of ∼1,800 Escherichia coli GFP transcriptional reporter strains, we identified a reporter that is highly induced by cell envelope stress-pProm rcsA -GFP. After characterizing pProm rcsA -GFP induction, we assessed a collection of bioactive small molecules for reporter induction, identifying 24 compounds of interest. Spontaneous suppressors to one compound in particular, MAC-0452936, mapped to the gene encoding the essential prolipoprotein diacylglyceryl transferase, lgt. Lgt inhibition by MAC-0452936 inhibition was confirmed through genetic, phenotypic, and biochemical approaches. The oxime ester, MAC-0452936, represents a useful small molecule inhibitor of Lgt and highlights the potential of using pProm rcsA -GFP as a phenotypic screening tool.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J. Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicole Ritchie
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Timsy Bhando
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rowan Ives
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amelia B.Y. Guo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarrod W. Johnson
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Jakob Magolan
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D. Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Gartly SC, Barretto LAF, Côté ACMT, Kosowan ZA, Fowler CC. A novel phospholipase A2 is a core component of the typhoid toxin genetic islet. J Biol Chem 2024; 300:107758. [PMID: 39260696 PMCID: PMC11525133 DOI: 10.1016/j.jbc.2024.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Salmonella Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology; however, the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is cotranscribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither cosecreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between WT S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.
Collapse
Affiliation(s)
- Sarah C Gartly
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Luke A F Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Zach A Kosowan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Lobertti CA, Gizzi FO, Magni C, Rial A, Chabalgoity JA, Yim L, Blancato VS, Asquith CRM, García Véscovi E. Enhancing colistin efficacy against Salmonella infections with a quinazoline-based dual therapeutic strategy. Sci Rep 2024; 14:5148. [PMID: 38429351 PMCID: PMC10907601 DOI: 10.1038/s41598-024-55793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.
Collapse
Affiliation(s)
- Carlos A Lobertti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Fernán O Gizzi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Avda. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - José A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Avda. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Avda. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Víctor S Blancato
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina.
| |
Collapse
|
8
|
Saxena D, Maitra R, Bormon R, Czekanska M, Meiers J, Titz A, Verma S, Chopra S. Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:17. [PMID: 39843585 PMCID: PMC11721184 DOI: 10.1038/s44259-023-00016-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2025]
Abstract
Emerging resistance to all available antibiotics highlights the need to develop new antibiotics with novel mechanisms of action. Most of the currently used antibiotics target Gram-positive bacteria while Gram-negative bacteria easily bypass the action of most drug molecules because of their unique outer membrane. This additional layer acts as a potent barrier restricting the entry of compounds into the cell. In this scenario, several approaches have been elucidated to increase the accumulation of compounds into Gram-negative bacteria. This review includes a brief description of the physicochemical properties that can aid compounds to enter and accumulate in Gram-negative bacteria and covers different strategies to target or bypass the outer membrane-mediated barrier in Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rakhi Bormon
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India
| | - Marta Czekanska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India.
- Center for Nanoscience, IIT Kanpur, Kanpur, 208016, UP, India.
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Müller J, Bollenbach T. Quantitative approaches to study phenotypic effects of large-scale genetic perturbations. Curr Opin Microbiol 2023; 74:102333. [PMID: 37276805 DOI: 10.1016/j.mib.2023.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
How microbes interact with their environment and how the complex interplay of their genes enables them to survive and thrive under stress is a fundamental question in microbial system biology, which is also important from a public health perspective. Large-scale studies of gene-gene, gene-drug, and drug-drug interactions have proven to be powerful tools for elucidating gene function and functional modules in the cell. Approaches that systematically quantify phenotypes in libraries of microbial strains with genome-wide genetic perturbations are crucial for progress in this area. Here, we review recent advances in this field, and point out applications to the study of gene-drug interactions. We highlight newly developed techniques for the rapid generation of genome-wide mutant libraries and the high-throughput measurement of more complex phenotypes and other observables, such as cell morphology or thermal stability of the proteome.
Collapse
Affiliation(s)
- Janina Müller
- Institute for Biological Physics, University of Cologne, 50931 Cologne, Germany
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, 50931 Cologne, Germany; Center for Data and Simulation Science, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|