1
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
2
|
Guy CS, Gott JA, Ramírez-Cárdenas J, de Wolf C, Furze CM, West G, Muñoz-García JC, Angulo J, Fullam E. Fluorinated trehalose analogues for cell surface engineering and imaging of Mycobacterium tuberculosis. Chem Sci 2024:d4sc00721b. [PMID: 39144457 PMCID: PMC11317875 DOI: 10.1039/d4sc00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 08/16/2024] Open
Abstract
The sensitive, rapid and accurate diagnosis of Mycobacterium tuberculosis (Mtb) infection is a central challenge in controlling the global tuberculosis (TB) pandemic. Yet the detection of mycobacteria is often made difficult by the low sensitivity of current diagnostic tools, with over 3.6 million TB cases missed each year. To overcome these limitations there is an urgent need for next-generation TB diagnostic technologies. Here we report the use of a discrete panel of native 19F-trehalose (F-Tre) analogues to label and directly visualise Mtb by exploiting the uptake of fluorine-modified trehalose analogues via the mycobacterial trehalose LpqY-SugABC ATP-binding cassette (ABC) importer. We discovered the extent of modified F-Tre uptake correlates with LpqY substrate recognition and characterisation of the interacting sites by saturation transfer difference NMR coupled with molecular dynamics provides a unique glimpse into the molecular basis of fluorine-modified trehalose import in Mtb. Lipid profiling demonstrated that F-Tre analogues modified at positions 2, 3 and 6 are incorporated into mycobacterial cell-surface trehalose-containing glycolipids. This rapid one-step labelling approach facilitates the direct visualisation of F-Tre-labelled Mtb by Focused Ion Beam (FIB) Secondary Ion Mass Spectrometry (SIMS), enabling detection of the Mtb pathogen. Collectively, our findings highlight that F-Tre analogues have potential as tools to probe and unravel Mtb biology and can be exploited to detect and image TB.
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | | | - Jonathan Ramírez-Cárdenas
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Avenida Américo Vespucio, 49 Sevilla 41092 Spain
| | - Christopher de Wolf
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Christopher M Furze
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Geoff West
- WMG, University of Warwick Coventry CV4 7AL UK
| | - Juan C Muñoz-García
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Avenida Américo Vespucio, 49 Sevilla 41092 Spain
| | - Jesus Angulo
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Avenida Américo Vespucio, 49 Sevilla 41092 Spain
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| |
Collapse
|
3
|
Wuo MG, Dulberger CL, Warner TC, Brown RA, Sturm A, Ultee E, Bloom-Ackermann Z, Choi C, Zhu J, Garner EC, Briegel A, Hung DT, Rubin EJ, Kiessling LL. Fluorogenic Probes of the Mycobacterial Membrane as Reporters of Antibiotic Action. J Am Chem Soc 2024; 146:17669-17678. [PMID: 38905328 PMCID: PMC11646346 DOI: 10.1021/jacs.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.
Collapse
Affiliation(s)
- Michael G. Wuo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Theodore C. Warner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Robert A. Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| | - Alexander Sturm
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Eveline Ultee
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | | | - Catherine Choi
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Ariane Briegel
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| |
Collapse
|
4
|
Calles-Garcia D, Dube DH. Chemical biology tools to probe bacterial glycans. Curr Opin Chem Biol 2024; 80:102453. [PMID: 38582017 PMCID: PMC11164641 DOI: 10.1016/j.cbpa.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.
Collapse
Affiliation(s)
- Daniel Calles-Garcia
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
5
|
Weigert Muñoz A, Zhao W, Sieber SA. Monitoring host-pathogen interactions using chemical proteomics. RSC Chem Biol 2024; 5:73-89. [PMID: 38333198 PMCID: PMC10849124 DOI: 10.1039/d3cb00135k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.
Collapse
Affiliation(s)
- Angela Weigert Muñoz
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Germany
| |
Collapse
|
6
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Liyanage S, Raviranga NGH, Ryan JG, Shell SS, Ramström O, Kalscheuer R, Yan M. Azide-Masked Fluorescence Turn-On Probe for Imaging Mycobacteria. JACS AU 2023; 3:1017-1028. [PMID: 37124305 PMCID: PMC10131213 DOI: 10.1021/jacsau.2c00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.
Collapse
Affiliation(s)
- Sajani
H. Liyanage
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - N. G. Hasitha Raviranga
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Julia G. Ryan
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Scarlet S. Shell
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Olof Ramström
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-39182 Kalmar, Sweden
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Mingdi Yan
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
8
|
Hodges H, Obeng K, Avanzi C, Ausmus AP, Angala SK, Kalera K, Palcekova Z, Swarts BM, Jackson M. Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria. ACS Chem Biol 2023; 18:595-604. [PMID: 36856664 PMCID: PMC10071489 DOI: 10.1021/acschembio.2c00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.
Collapse
Affiliation(s)
- Heather Hodges
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Kwaku Obeng
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Alex P. Ausmus
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Zuzana Palcekova
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| |
Collapse
|