1
|
Sarkar R, Bandyopadhyay A, Brahmachari G. Residue-specific protein-glycan conjugation strategies for the development of pharmaceutically promising glycoconjugate vaccines: A recent update. Carbohydr Res 2025; 552:109476. [PMID: 40188503 DOI: 10.1016/j.carres.2025.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/08/2025]
Abstract
Covalent coupling between a carbohydrate antigen and a protein carrier leads to the formation of pharmaceutically promising glycoconjugate vaccines. Most licensed glycoconjugate vaccines are acquired by random bioconjugation of native or sized glycans with the surface-exposed amino acid residues of proteins, such as lysine, cysteine, aspartic acid, glutamic amino acid, etc. In the last two decades, considerable momentum has been gained in the glycoconjugate vaccine development by discovering several residue-specific bioconjugation strategies. As a result, glycoconjugate chemistry reaches the verge of discovering well-defined and "real" homogeneous vaccines, which may be more potent to generate antimicrobial resistance against "bad-bugs". Through this literature survey, we intend to highlight the state of the art of residue-specific bioconjugation of proteins with glycans to obtain glycoconjugate vaccines. The review will also identify a potential roadmap to address the gap and the prospects in the medicinal domain.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Muragachha Government College, Nadia, 741154, West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Chapra Government College, Nadia, 741123, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, 731 235, West Bengal, India.
| |
Collapse
|
2
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
3
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
4
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Kakwere H, Harriman R, Pirir M, Avila C, Chan K, Lewis JS. Engineering immunomodulatory nanoplatforms from commensal bacteria-derived polysaccharide A. J Mater Chem B 2022; 10:1210-1225. [PMID: 35132431 DOI: 10.1039/d1tb02590b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Capsular zwitterionic polysaccharides (CZPs), typically found on the surfaces of commensal gut bacteria, are important immunomodulatory molecules due to their ability to produce a T cell dependent immune response upon processing by antigen presenting cells (APCs). Their immunological activity makes them potentially useful for generating material constructs that are applicable for the treatment of diseases, or as vaccines. Herein, we explored synthetic strategies to generate immunologically active polymer-carbohydrate conjugates and nanomaterials of the CZP, Polysaccharide A (PSA) derived from Bacteroides fragilis. Initially, we addressed the purification of PSA, which is critical for the realization of materials applicable for biomedical purposes. Anion exchange high performance liquid chromatography in the presence of a surfactant (CHAPS) enabled the isolation of pure PSA. Through modification of purified PSA with azide groups, we demonstrated that polymers or antigens could be incorporated with PSA via click chemistry reactions to generate conjugates that can be fabricated into nanoparticles. By conjugation of PSA with a DBCO end functionalized polyphosphoester polymer with hydrophobic pendant terminal alkyne groups, an amphiphilic conjugate was obtained which formed nanoparticles of about 100 nm in aqueous solution. Moreover, terminal alkyne groups could be modified with charged thiol molecules (amine/carboxylate) via thiol-yne radical chemistry to generate conjugates, which could be incorporated into nanoparticles via electrostatic interactions building onto a charged nanoparticle template. The conjugates and nanoparticles exhibited immunological activity as assessed by the toll-like receptor 2 (TLR2) activation assay and positive cytokine production (IL-10) following their co-incubation with APCs and T cells. Summarily, this work plainly demonstrates chemical biology strategies for fabricating immunomodulatory nanomaterials from commensal microorganisms that can potentially be novel vaccines or immunotherapeutics.
Collapse
Affiliation(s)
- Hamilton Kakwere
- Department of Biomedical Engineering, University of California (Davis), 1 Shields Avenue, Davis, CA 95616, USA.
| | - Rian Harriman
- Department of Biomedical Engineering, University of California (Davis), 1 Shields Avenue, Davis, CA 95616, USA.
| | - Mauricio Pirir
- Department of Biomedical Engineering, University of California (Davis), 1 Shields Avenue, Davis, CA 95616, USA.
| | - Crystal Avila
- Department of Biomedical Engineering, University of California (Davis), 1 Shields Avenue, Davis, CA 95616, USA.
| | - Kristen Chan
- Department of Biomedical Engineering, University of California (Davis), 1 Shields Avenue, Davis, CA 95616, USA.
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California (Davis), 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Pietri GP, Tontini M, Brogioni B, Oldrini D, Robakiewicz S, Henriques P, Calloni I, Abramova V, Santini L, Malić S, Miklić K, Lisnic B, Bertuzzi S, Unione L, Balducci E, de Ruyck J, Romano MR, Jimenez-Barbero J, Bouckaert J, Jonjic S, Rovis TL, Adamo R. Elucidating the Structural and Minimal Protective Epitope of the Serogroup X Meningococcal Capsular Polysaccharide. Front Mol Biosci 2021; 8:745360. [PMID: 34722634 PMCID: PMC8551719 DOI: 10.3389/fmolb.2021.745360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay. The antibody was tested by the inhibition enzyme-linked immunosorbent assay and surface plasmon resonance against a set of oligosaccharide fragments of different lengths. The epitope was shown to be contained within five to six α-(1–4) phosphodiester mannosamine repeating units. The molecular interactions between the protective monoclonal antibody and the MenX capsular polysaccharide fragment were further detailed at the atomic level by saturation transfer difference nuclear magnetic resonance (NMR) spectroscopy. The NMR results were used for validation of the in silico docking analysis between the X-ray crystal structure of the antibody (Fab fragment) and the modeled hexamer oligosaccharide. The antibody recognizes the MenX fragment by binding all six repeating units of the oligosaccharide via hydrogen bonding, salt bridges, and hydrophobic interactions. In vivo studies demonstrated that conjugates containing five to six repeating units can produce high functional antibody levels. These results provide an insight into the molecular basis of MenX vaccine-induced protection and highlight the requirements for the epitope-based vaccine design.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | - Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Ilaria Calloni
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Vera Abramova
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Suzana Malić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Luca Unione
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | | | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Jesus Jimenez-Barbero
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, University of the Basque Country, Universidad Del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Berti F, Romano MR, Micoli F, Adamo R. Carbohydrate based meningococcal vaccines: past and present overview. Glycoconj J 2021; 38:401-409. [PMID: 33905086 PMCID: PMC8076658 DOI: 10.1007/s10719-021-09990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitidis worldwide. Children less than five years and adolescents are particularly affected. Nearly all invasive strains are surrounded by a polysaccharide capsule, based on which, 12 N. meningitidis serogroups are differentiated. Six of them, A, B, C, W, X, and Y, cause the vast majority of infections in humans. Mono- and multi-valent carbohydrate-based vaccines against meningococcal infections have been licensed or are currently in clinical development. In this mini-review, an overview of the past and present approaches for producing meningococcal glycoconjugate vaccines is provided.
Collapse
|
9
|
Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide. Proc Natl Acad Sci U S A 2020; 117:29795-29802. [PMID: 33158970 PMCID: PMC7703565 DOI: 10.1073/pnas.2011385117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meningococcal meningitis remains a substantial cause of mortality and morbidity worldwide. Until recently, countries in the African meningitis belt were susceptible to devastating outbreaks, largely attributed to serogroup A Neisseria meningitidis (MenA). Vaccination with glycoconjugates of MenA capsular polysaccharide led to an almost complete elimination of MenA clinical cases. To understand the molecular basis of vaccine-induced protection, we generated a panel of oligosaccharide fragments of different lengths and tested them with polyclonal and monoclonal antibodies by inhibition enzyme-linked immunosorbent assay, surface plasmon resonance, and competitive human serum bactericidal assay, which is a surrogate for protection. The epitope was shown to optimize between three and six repeating units and to be O-acetylated. The molecular interactions between a protective monoclonal antibody and a MenA capsular polysaccharide fragment were further elucidated at the atomic level by saturation transfer difference NMR spectroscopy and X-ray crystallography. The epitope consists of a trisaccharide anchored to the antibody via the O- and N-acetyl moieties through either H-bonding or CH-π interactions. In silico docking showed that 3-O-acetylation of the upstream residue is essential for antibody binding, while O-acetate could be equally accommodated at three and four positions of the other two residues. These results shed light on the mechanism of action of current MenA vaccines and provide a foundation for the rational design of improved therapies.
Collapse
|
10
|
Fiebig T, Cramer JT, Bethe A, Baruch P, Curth U, Führing JI, Buettner FFR, Vogel U, Schubert M, Fedorov R, Mühlenhoff M. Structural and mechanistic basis of capsule O-acetylation in Neisseria meningitidis serogroup A. Nat Commun 2020; 11:4723. [PMID: 32948778 PMCID: PMC7501274 DOI: 10.1038/s41467-020-18464-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
O-Acetylation of the capsular polysaccharide (CPS) of Neisseria meningitidis serogroup A (NmA) is critical for the induction of functional immune responses, making this modification mandatory for CPS-based anti-NmA vaccines. Using comprehensive NMR studies, we demonstrate that O-acetylation stabilizes the labile anomeric phosphodiester-linkages of the NmA-CPS and occurs in position C3 and C4 of the N-acetylmannosamine units due to enzymatic transfer and non-enzymatic ester migration, respectively. To shed light on the enzymatic transfer mechanism, we solved the crystal structure of the capsule O-acetyltransferase CsaC in its apo and acceptor-bound form and of the CsaC-H228A mutant as trapped acetyl-enzyme adduct in complex with CoA. Together with the results of a comprehensive mutagenesis study, the reported structures explain the strict regioselectivity of CsaC and provide insight into the catalytic mechanism, which relies on an unexpected Gln-extension of a classical Ser-His-Asp triad, embedded in an α/β-hydrolase fold.
Collapse
Affiliation(s)
- Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | | | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Petra Baruch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jana I Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Enotarpi J, Tontini M, Balocchi C, van der Es D, Auberger L, Balducci E, Carboni F, Proietti D, Casini D, Filippov DV, Overkleeft HS, van der Marel GA, Colombo C, Romano MR, Berti F, Costantino P, Codeé JDC, Lay L, Adamo R. A stabilized glycomimetic conjugate vaccine inducing protective antibodies against Neisseria meningitidis serogroup A. Nat Commun 2020; 11:4434. [PMID: 32895393 PMCID: PMC7477203 DOI: 10.1038/s41467-020-18279-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis serogroup A capsular polysaccharide (MenA CPS) consists of (1 → 6)-2-acetamido-2-deoxy-α-D-mannopyranosyl phosphate repeating units, O-acetylated at position C3 or C4. Glycomimetics appear attractive to overcome the CPS intrinsic lability in physiological media, due to cleavage of the phosphodiester bridge, and to develop a stable vaccine with longer shelf life in liquid formulation. Here, we generate a series of non-acetylated carbaMenA oligomers which are proven more stable than the CPS. An octamer (DP8) inhibits the binding of a MenA specific bactericidal mAb and polyclonal serum to the CPS, and is selected for further in vivo testing. However, its CRM197 conjugate raises murine antibodies towards the non-acetylated CPS backbone, but not the natural acetylated form. Accordingly, random O-acetylation of the DP8 is performed, resulting in a structure (Ac-carbaMenA) showing improved inhibition of anti-MenA CPS antibody binding and, after conjugation to CRM197, eliciting anti-MenA protective murine antibodies, comparably to the vaccine benchmark.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Neutralizing/chemistry
- Bacterial Capsules/immunology
- Biomimetics/methods
- Glycoconjugates/chemical synthesis
- Glycoconjugates/immunology
- Mice
- Neisseria meningitidis, Serogroup A/chemistry
- Neisseria meningitidis, Serogroup A/drug effects
- Neisseria meningitidis, Serogroup A/immunology
- Polysaccharides, Bacterial/chemical synthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/microbiology
Collapse
Affiliation(s)
- Jacopo Enotarpi
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | | | | | - Daan van der Es
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | - Ludovic Auberger
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy
| | | | | | | | | | - Dmitri V Filippov
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | | | - Cinzia Colombo
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy
| | | | | | | | - Jeroen D C Codeé
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands.
| | - Luigi Lay
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy.
| | | |
Collapse
|
12
|
Manabe Y, Shimoyama A, Kabayama K, Fukase K. Middle Molecular and Conjugation Strategies for Development of Bioactive Middle Molecules. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
13
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
14
|
Hlozek J, Ravenscroft N, Kuttel MM. Modeling the conformations of Neisseria meningitidis serogroup a CPS and a carba-analogue: Implications for vaccine development. Carbohydr Res 2019; 486:107838. [PMID: 31654945 DOI: 10.1016/j.carres.2019.107838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in Africa. The capsular polysaccharide is the main virulence factor and the target antigen for polysaccharide- and conjugate vaccines. Three tetravalent conjugate vaccines against serogroups A, C, Y and W have been licensed and the monovalent MenAfriVac® was introduced to address the high burden of serogroup A disease in the Meningitis Belt of sub-Saharan Africa. Three of these four vaccines are lyophilized due to the instability of the serogroup A antigen (MenA) in aqueous solution, resulting in a two vial presentation with concomitant additional costs for storage and distribution. Replacement of the saccharide ring oxygen with a methylene group is a promising approach to preparing a stable oligosaccharide MenA analogue (Carba-MenA) vaccine suitable for a liquid formulation. However, to be effective, Carba-MenA must elicit an immune response that is cross-reactive to the native MenA. Here we employ microsecond molecular dynamics simulations of ten repeats of MenA and Carba-MenA to establish that there are significant differences in the conformation and dynamics of these antigens in solution. Carba-MenA has a more random extended, conformation than MenA; MenA has a significant population of compact S-bend conformations that are absent in the analogue. We also find that the disaccharides are poor models of the conformational behaviour of longer chains. This information is relevant for the rational design of optimal analogues for conjugate vaccines.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
15
|
Gragnani T, Cuffaro D, Fallarini S, Lombardi G, D'Andrea F, Guazzelli L. Selectively Charged and Zwitterionic Analogues of the Smallest Immunogenic Structure of Streptococcus Pneumoniae Type 14. Molecules 2019; 24:E3414. [PMID: 31546911 PMCID: PMC6767069 DOI: 10.3390/molecules24183414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Zwitterionic polysaccharides (ZPs) have been shown in recent years to display peculiar immunological properties, thus attracting the interest of the carbohydrate research community. To fully elucidate the mechanisms underlying these properties and exploit the potential of this kind of structures, in depth studies are still required. In this context, the preparation of two cationic, an anionic, as well as two zwitterionic tetrasaccharide analogues of the smallest immunogenic structure of Streptococcus pneumoniae type 14 (SP14) capsular polysaccharide are presented. By exploiting a block strategy, the negative charge has been installed on the non-reducing end of the lactose unit of the tetrasaccharide and the positive charge either on the non-reducing end of the lactosamine moiety or on an external linker. These structures have then been tested by competitive ELISA, showing that the structural variations we made do not modify the affinity of the neutral compound to binding to a specific antibody. However, lower efficacies than the natural SP14 compound were observed. The results obtained, although promising, point to the need to further elongate the polysaccharide structure, which is likely too short to cover the entire epitopes.
Collapse
Affiliation(s)
- Tiziana Gragnani
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Doretta Cuffaro
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy.
| | - Grazia Lombardi
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy.
| | - Felicia D'Andrea
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| |
Collapse
|
16
|
Dalal J, Rana R, Harale K, Hanif S, Kumar N, Singh D, Chhikara MK. Development and pre-clinical evaluation of a synthetic oligosaccharide-protein conjugate vaccine against Neisseria meningitidis serogroup C. Vaccine 2019; 37:5297-5306. [DOI: 10.1016/j.vaccine.2019.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/25/2022]
|
17
|
Pfister HB, Lu X, Soliman SE, Kováč P. Conjugation of Synthetic Oligosaccharides to Proteins by Squaric Acid Chemistry. Methods Mol Biol 2019; 1954:77-88. [PMID: 30864125 DOI: 10.1007/978-1-4939-9154-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oligosaccharides equipped with amine-containing linkers can be conjugated to carrier proteins using squaric acid chemistry. In a two-step process, a squarate derivative of such oligosaccharide is formed first, which is followed by its reaction with a protein carrier. Monitoring of the conjugation reaction is achieved by SELDI-TOF-MS or MALDI-TOF-MS. This experimentally simple procedure yields desired glycoconjugates in high yields and with reproducible hapten-protein ratios.
Collapse
Affiliation(s)
| | - Xiaowei Lu
- National Institutes of Health, NIDDK, LBC, Bethesda, MD, USA
| | - Sameh E Soliman
- National Institutes of Health, NIDDK, LBC, Bethesda, MD, USA
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Calloni I, Unione L, Jiménez-Osés G, Corzana F, Del Bino L, Corrado A, Pitirollo O, Colombo C, Lay L, Adamo R, Jiménez-Barbero J. The Conformation of the Mannopyranosyl Phosphate Repeating Unit of the Capsular Polysaccharide of Neisseria meningitidis Serogroup A and Its Carba-Mimetic. European J Org Chem 2018; 2018:4548-4555. [PMID: 30443159 PMCID: PMC6220853 DOI: 10.1002/ejoc.201801003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 11/07/2022]
Abstract
Neisseria meningitidis serogroup A (MenA) is an aerobic diplococcal Gram-negative bacterium responsible for epidemic meningitis disease. Its capsular polysaccharide (CPS) has been identified as the primary virulence factor of MenA. This polysaccharide suffers from chemical lability in water. Thus, the design and synthesis of novel and hydrolytically stable structural analogues of MenA CPS may provide additional tools for the development of therapies against this disease. In this context, the structural features of the natural phosphorylated monomer have been analyzed and compared to those of its carba-analogue, where the endocyclic oxygen has been replaced by a methylene moiety. The lowest energy geometries of the different molecules have been calculated using a combination of quantum mechanical techniques and molecular dynamics simulations. The predicted results have been compared and validated using NMR experiments. The results indicate that the more stable designed glycomimetics may adopt the conformation adopted by the natural monomer, although they display a wider flexibility around the torsional degrees of freedom.
Collapse
Affiliation(s)
- Ilaria Calloni
- Chemical Glycobiology Lab CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Spain.,Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV Leioa Spain
| | - Luca Unione
- Atlas Molecular Pharma Bizkaia Technology Park, Building 800 48160 Derio Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Quimica Universidad de la Rioja Centro Científico Tecnológico Spain
| | - Francisco Corzana
- Departamento de Quimica Universidad de la Rioja Centro Científico Tecnológico Spain
| | | | - Alessio Corrado
- Glycobiology Lab GSK Via Fiorentina 10 Siena Italy.,Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | - Olimpia Pitirollo
- Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | - Cinzia Colombo
- Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | - Luigi Lay
- Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | | | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Spain.,Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV Leioa Spain.,Basque Foundation for Science (IKERBASQUE) 48009 Bilbao Spain
| |
Collapse
|
19
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
20
|
Fiebig T, Litschko C, Freiberger F, Bethe A, Berger M, Gerardy-Schahn R. Efficient solid-phase synthesis of meningococcal capsular oligosaccharides enables simple and fast chemoenzymatic vaccine production. J Biol Chem 2017; 293:953-962. [PMID: 29187601 DOI: 10.1074/jbc.ra117.000488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Neisseria meningitidis serogroups A and X are among the leading causes of bacterial meningitis in the African meningitis belt. Glycoconjugate vaccines, consisting of an antigenic carrier protein coupled to the capsular polysaccharide of the bacterial pathogen, are the most effective strategy for prevention of meningococcal disease. However, the distribution of effective glycoconjugate vaccines in this region is limited by the high cost of cultivating pathogens and purification of their capsular polysaccharides. Moreover, chemical approaches to synthesize oligosaccharide antigens have proven challenging. In the current study, we present a chemoenzymatic approach for generating tailored oligosaccharide fractions ready for activation and coupling to the carrier protein. In a first step, the elongation modes of recombinant capsular polymerases from Neisseria meningitidis serogroups A (CsaB) and X (CsxA) were characterized. We observed that CsaB is a distributive enzyme, and CsxA is a processive enzyme. Sequence comparison of these two stealth family proteins revealed a C-terminal extension in CsxA, which conferred processivity because of the existence of a second product-binding site. Deletion of the C-terminal domain converted CsxA into a distributive enzyme, allowing facile control of product length by adjusting the ratio of donor to acceptor sugars. Solid-phase fixation of the engineered capsular polymerases enabled rapid production of capsular polysaccharides with high yield and purity. In summary, the tools developed here provide critical steps toward reducing the cost of conjugate vaccine production, which will increase access in regions with the greatest need. Our work also facilitates efforts to study the relationship between oligosaccharide size and antigenicity.
Collapse
Affiliation(s)
- Timm Fiebig
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Christa Litschko
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Friedrich Freiberger
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrea Bethe
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Berger
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
21
|
Abstract
Since 2004, when the first synthetic glycoconjugate vaccine against the pneumonia and meningitis causing bacterium Haemophilus influenza type b (Hib) approved for human use in Cuba was reported, 34 million doses of the synthetic vaccine have been already distributed in several countries under the commercial name of Quimi-Hib. However, despite the success of this product, no other synthetic glycoconjugate vaccine has been licensed in the following 13 years. As well as avoiding the need to handle pathogens, synthetic glycoconjugates offer clear advantages in terms of product characterization and the possibility to understand the parameters influencing immunogenicity. Nevertheless, large scale application of synthetic sugars has been perceived as challenging because of manufacturing costs and process complexity compared to natural polysaccharides. Chemoenzymatic approaches, one-pot protocols, and automated solid-phase synthesis are rendering carbohydrate production considerably more attractive for industrialization. Here we identify three areas where chemical approaches can advance this progress: (i) chemical or enzymatic methods enabling the delivery of the minimal polysaccharide portion responsible for an effective immune response; (ii) site-selective chemical or enzymatic conjugation strategies for the exploration of the conjugation point in immune responses against carbohydrate-based vaccines, and the consistent preparation of more homogeneous products; (iii) multicomponent constructs targeting receptors responsible for immune response modulation in order to control its quality and magnitude. We discuss how synthesis of bacterial oligosaccharides is useful toward understanding the polysaccharide portion responsible for immunogenicity, and for developing robust and consistent alternatives to natural heterogeneous polysaccharides. The synthesis of sugar analogues can lead to the identification of hydrolytically more stable versions of oligosaccharide antigens. The study of bacterial polysaccharide biosynthesis aids the development of in vitro hazard-free oligosaccharide production. Novel site-selective conjugation methods contribute toward deciphering the role of conjugation sites in the immunogenicity of glycoconjugates and prove to be particularly useful when glycans are conjugated to protein serving as carrier and antigen. The orthogonal incorporation of two different carbohydrate haptens enables the reduction of vaccine components. Finally, coordinated conjugation of glycans and small molecule immunopotentiators supports simplification of vaccine formulation and localization of adjuvant. Synergistic advancement of these areas, combined with competitive manufacturing processes, will contribute to a better understanding of the features guiding the immunological activity of glycoconjugates and, ultimately, to the design of improved, safer vaccines.
Collapse
|