1
|
Mishra S, Singh PR, Hu X, Lopez-Quezada L, Jinich A, Jahn R, Geurts L, Shen N, DeJesus MA, Hartman T, Rhee K, Zimmerman M, Dartois V, Jones RM, Jiang X, Almada-Monter R, Bourouiba L, Nathan C. Candidate transmission survival genome of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2025; 122:e2425981122. [PMID: 40053362 PMCID: PMC11912377 DOI: 10.1073/pnas.2425981122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb), a leading cause of death from infection, completes its life cycle entirely in humans except for transmission through the air. To begin to understand how Mtb survives aerosolization, we mimicked liquid and atmospheric conditions experienced by Mtb before and after exhalation using a model aerosol fluid (MAF) based on the water-soluble, lipidic, and cellular constituents of necrotic tuberculosis lesions. MAF induced drug tolerance in Mtb, remodeled its transcriptome, and protected Mtb from dying in microdroplets desiccating in air. Yet survival was not passive: Mtb appeared to rely on hundreds of genes to survive conditions associated with transmission. Essential genes subserving proteostasis offered most protection. A large number of conventionally nonessential genes appeared to contribute as well, including genes encoding proteins that resemble antidesiccants. The candidate transmission survival genome of Mtb may offer opportunities to reduce transmission of tuberculosis.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Prabhat Ranjan Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Xiaoyi Hu
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Landys Lopez-Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Adrian Jinich
- Department of Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA92093-0021
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA92093-0021
| | - Robin Jahn
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luc Geurts
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Naijian Shen
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, Rockefeller University, New York, NY10021
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Richard M. Jones
- Department of Microbiology, University of Washington, Seattle, WA98195
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Ricardo Almada-Monter
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA92093-0021
| | - Lydia Bourouiba
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
2
|
Strydom N, van Wijk RC, Wang Q, Ernest JP, Chaba L, Li Z, Nuermberger EL, Savic RM. Selection and prioritization of candidate combination regimens for the treatment of tuberculosis. Sci Transl Med 2025; 17:eadi4000. [PMID: 39908348 DOI: 10.1126/scitranslmed.adi4000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Accelerated tuberculosis drug discovery has increased the number of plausible multidrug regimens. Testing every drug combination in vivo is impractical, and varied experimental conditions make it challenging to compare results between experiments. Using published treatment efficacy data from a mouse tuberculosis model treated with candidate combination regimens, we trained and externally validated integrative mathematical models to predict relapse in mice and to rank both previously experimentally studied and unstudied regimens by their sterilization potential. We generated 18 datasets of 18 candidate regimens (comprising 11 drugs of six classes, including fluoroquinolone, nitroimidazole, diarylquinolines, and oxazolidinones), with 2965 relapse and 1544 colony-forming unit (CFU) observations for analysis. Statistical and machine learning techniques were applied to predict the probability of relapse in mice. The locked down mathematical model had an area under the receiver operating characteristic curve (AUROC) of 0.910 and showed that bacterial kill measured by longitudinal CFU cannot account for relapse alone and that sterilization is drug dependent. The diarylquinolines had the highest predicted sterilizing activity in the mouse model, and the addition of pyrazinamide to drug regimens provided the shortest estimated tuberculosis treatment duration to cure in mice. The mathematical model predicted the effect of treatment combinations, and these predictions were validated by conducting 11 experiments on previously unstudied regimens, achieving an AUROC of 0.829. We surmise that the next generation of tuberculosis drugs are highly effective at treatment shortening and suggest that there are several promising three- and four-drug regimens that should be advanced to clinical trials.
Collapse
Affiliation(s)
- Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rob C van Wijk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linda Chaba
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ziran Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Ranjan R, Devireddy VSR. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39648822 DOI: 10.1089/jamp.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Background: Drug resistant tuberculosis is a major public health concern, since the causative agent Mycobacterium tuberculosis is resistant to the most effective drugs against tuberculosis treatment ie., rifampicin and isoniazid. Globally, it accounts 4.6 percent of the patients with tuberculosis, but in some low socioeconomic areas this proportion exceeds to 25 percent. The treatment of drug resistant tuberculosis is prolonged (9-12 months) and often have less favorable outcome with novel as well as recently repurposed drugs administered by conventional routes. Materials and Methods: Clinically, these repurposed drugs have shown several major concerns including low penetration of the drugs to the pulmonary region, emergence of resistant forms, first pass effects, drug-drug interactions, food effects, and serious side effects upon administration by conventional route of administration. Although, several antimicrobial agents have been either approved or are under investigation at different stages of clinical trials and in pre-clinical studies via inhalation route for the treatment of respiratory infections, inhalable formulation for the treatment of drug resistant tuberculosis is most untouched aspect of drug delivery to validate clinically. Only a single dry powder inhalation formulation of capreomycin is able to reach the milestone, ie., phase I for the treatment of drug resistant tuberculosis. Results: Administering inhalable formulations of repurposed drugs as adjuvant in the treatment of drug resistant tuberculosis could mitigate several concerns by targeting drugs directly in the vicinity of bacilli. Conclusion: This review focuses on the limitations and major concerns observed during clinical trials of repurposed drugs (host directed or bactericidal drugs) administered conventionally for the treatment of drug resistant tuberculosis. The outcomes and the concerns of these clinical trials rationalized the need of repurposing formulation which could be administered by inhalation route as adjunctive treatment of drug resistant tuberculosis. [Figure: see text].
Collapse
Affiliation(s)
- Rajeev Ranjan
- Faculty of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | | |
Collapse
|
4
|
Karakitsios E, Dokoumetzidis A. Extrapolation of lung pharmacokinetics of antitubercular drugs from preclinical species to humans using PBPK modelling. J Antimicrob Chemother 2024; 79:1362-1371. [PMID: 38598449 PMCID: PMC11144487 DOI: 10.1093/jac/dkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To develop physiologically based pharmacokinetic (PBPK) models for widely used anti-TB drugs, namely rifampicin, pyrazinamide, isoniazid, ethambutol and moxifloxacin lung pharmacokinetics (PK)-regarding both healthy and TB-infected tissue (cellular lesion and caseum)-in preclinical species and to extrapolate to humans. METHODS Empirical models were used for the plasma PK of each species, which were connected to multicompartment permeability-limited lung models within a middle-out PBPK approach with an appropriate physiological parameterization that was scalable across species. Lung's extracellular water (EW) was assumed to be the linking component between healthy and infected tissue, while passive diffusion was assumed for the drug transferring between cellular lesion and caseum. RESULTS In rabbits, optimized unbound fractions in intracellular water of rifampicin, moxifloxacin and ethambutol were 0.015, 0.056 and 0.08, respectively, while the optimized unbound fractions in EW of pyrazinamide and isoniazid in mice were 0.25 and 0.17, respectively. In humans, all mean extrapolated daily AUC and Cmax values of various lung regions were within 2-fold of the observed ones. Unbound concentrations in the caseum were lower than unbound plasma concentrations for both rifampicin and moxifloxacin. For rifampicin, unbound concentrations in cellular rim are slightly lower, while for moxifloxacin they are significantly higher than unbound plasma concentrations. CONCLUSIONS The developed PBPK approach was able to extrapolate lung PK from preclinical species to humans and to predict unbound concentrations in the various TB-infected regions, unlike empirical lung models. We found that plasma free drug PK is not always a good surrogate for TB-infected tissue unbound PK.
Collapse
Affiliation(s)
- Evangelos Karakitsios
- Department of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Pharma-Informatics Unit, Athena Research Center, Artemidos 6 & Epidavrou, 15125 Marousi, Greece
- Institute for Applied Computing “Mauro Picone”, National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Aristides Dokoumetzidis
- Department of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Pharma-Informatics Unit, Athena Research Center, Artemidos 6 & Epidavrou, 15125 Marousi, Greece
- Institute for Applied Computing “Mauro Picone”, National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
5
|
Boshoff HIM, Young K, Ahn YM, Yadav VD, Crowley BM, Yang L, Su J, Oh S, Arora K, Andrews J, Manikkam M, Sutphin M, Smith AJ, Weiner DM, Piazza MK, Fleegle JD, Gomez F, Dayao EK, Prideaux B, Zimmerman M, Kaya F, Sarathy J, Tan VY, Via LE, Tschirret-Guth R, Lenaerts AJ, Robertson GT, Dartois V, Olsen DB, Barry CE. Mtb-Selective 5-Aminomethyl Oxazolidinone Prodrugs: Robust Potency and Potential Liabilities. ACS Infect Dis 2024; 10:1679-1695. [PMID: 38581700 DOI: 10.1021/acsinfecdis.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.
Collapse
Affiliation(s)
- Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Katherine Young
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Veena D Yadav
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Lihu Yang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jing Su
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jenna Andrews
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michelle Manikkam
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Michelle Sutphin
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Anthony J Smith
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Danielle M Weiner
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Michaela K Piazza
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Joel D Fleegle
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Felipe Gomez
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Emmannual K Dayao
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Brendan Prideaux
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Zimmerman
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Firat Kaya
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Jansy Sarathy
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Vee Yang Tan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Laura E Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | | | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Gregory T Robertson
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Véronique Dartois
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - David B Olsen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Mehta K, Guo T, van der Graaf PH, van Hasselt JGC. Model-based dose optimization framework for bedaquiline, pretomanid and linezolid for the treatment of drug-resistant tuberculosis. Br J Clin Pharmacol 2024; 90:463-474. [PMID: 37817504 DOI: 10.1111/bcp.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
AIMS Bedaquiline, pretomanid and linezolid (BPaL) combination treatment against Mycobacterium tuberculosis is promising, yet safety and adherence concerns exist that motivate exploration of alternative dosing regimens. We developed a mechanistic modelling framework to compare the efficacy of the current and alternative BPaL treatment strategies. METHODS Pharmacodynamic models for each drug in the BPaL combination treatment were developed using in vitro time-kill data. These models were combined with pharmacokinetic models, incorporating body weight, lesion volume, site-of-action distribution, bacterial susceptibility and pharmacodynamic interactions to assemble the framework. The model was qualified by comparing the simulations against the observed clinical data. Simulations were performed evaluating bedaquiline and linezolid approved (bedaquiline 400 mg once daily [QD] for 14 days followed by 200 mg three times a week, linezolid 1200 mg QD) and alternative dosing regimens (bedaquiline 200 mg QD, linezolid 600 mg QD). RESULTS The framework adequately described the observed antibacterial activity data in patients following monotherapy for each drug and approved BPaL dosing. The simulations suggested a minor difference in median time to colony forming unit (CFU)-clearance state with the bedaquiline alternative compared to the approved dosing and the linezolid alternative compared to the approved dosing. Median time to non-replicating-clearance state was predicted to be 15 days from the CFU-clearance state. CONCLUSIONS The model-based simulations suggested that comparable efficacy can be achieved using alternative bedaquiline and linezolid dosing, which may improve safety and adherence in drug-resistant tuberculosis patients. The framework can be utilized to evaluate treatment optimization approaches, including dosing regimen and duration of treatment predictions to eradicate both replicating- and non-replicating bacteria from lung and lesions.
Collapse
Affiliation(s)
- Krina Mehta
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Tingjie Guo
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Piet H van der Graaf
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara, Canterbury, UK
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Michael CT, Almohri SA, Linderman JJ, Kirschner DE. A framework for multi-scale intervention modeling: virtual cohorts, virtual clinical trials, and model-to-model comparisons. FRONTIERS IN SYSTEMS BIOLOGY 2024; 3:1283341. [PMID: 39310676 PMCID: PMC11415237 DOI: 10.3389/fsysb.2023.1283341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Computational models of disease progression have been constructed for a myriad of pathologies. Typically, the conceptual implementation for pathology-related in-silico intervention studies has been ad-hoc and similar in design to experimental studies. We introduce a multi-scale interventional design (MID) framework toward two key goals: tracking of disease dynamics from within-body to patient to population scale; and tracking impact(s) of interventions across these same spatial scales. Our MID framework prioritizes investigation of impact on individual patients within virtual pre-clinical trials, instead of replicating the design of experimental studies. We apply a MID framework to develop, organize, and analyze a cohort of virtual patients for the study of tuberculosis (TB) as an example disease. For this study, we use HostSim: our next-generation whole patient-scale computational model of individuals infected with Mycobacterium tuberculosis. HostSim captures infection within lungs by tracking multiple granulomas, together with dynamics occurring with blood and lymph node compartments, the compartments involved during pulmonary TB. We extend HostSim to include a simple drug intervention as an example of our approach and use our MID framework to quantify the impact of treatment at cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and population scales. Sensitivity analyses allow us to determine which features of virtual patients are the strongest predictors of intervention efficacy across scales. These insights allow us to identify patient-heterogeneous mechanisms that drive outcomes across scales.
Collapse
Affiliation(s)
- Christian T. Michael
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sayed Ahmad Almohri
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Denise E. Kirschner
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Perumal R, Bionghi N, Nimmo C, Letsoalo M, Cummings MJ, Hopson M, Wolf A, Jubaer SA, Padayatchi N, Naidoo K, Larsen MH, O'Donnell M. Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J 2023; 62:2300639. [PMID: 37945030 PMCID: PMC11035900 DOI: 10.1183/13993003.00639-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
Bedaquiline resistance is a major threat to drug-resistant tuberculosis control strategies. This analysis found a pooled prevalence of baseline bedaquiline resistance of 2.4% and a pooled prevalence of treatment-emergent bedaquiline resistance of 2.1%. https://bit.ly/3FC6yio
Collapse
Affiliation(s)
- Rubeshan Perumal
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Pulmonology and Critical Care, Department of Medicine, University of KwaZulu-Natal, Durban, South Africa
- These authors contributed equally to this work
| | - Neda Bionghi
- Department of Medicine, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
- These authors contributed equally to this work
| | | | - Marothi Letsoalo
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Matthew J Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeleine Hopson
- Department of Medicine, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Allison Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Shamim Al Jubaer
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Kogieleum Naidoo
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- These authors contributed equally to this work
| | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
- These authors contributed equally to this work
| |
Collapse
|
9
|
Nanda P, Budak M, Michael CT, Krupinsky K, Kirschner DE. Development and Analysis of Multiscale Models for Tuberculosis: From Molecules to Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566861. [PMID: 38014103 PMCID: PMC10680629 DOI: 10.1101/2023.11.13.566861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Although infectious disease dynamics are often analyzed at the macro-scale, increasing numbers of drug-resistant infections highlight the importance of within-host modeling that simultaneously solves across multiple scales to effectively respond to epidemics. We review multiscale modeling approaches for complex, interconnected biological systems and discuss critical steps involved in building, analyzing, and applying such models within the discipline of model credibility. We also present our two tools: CaliPro, for calibrating multiscale models (MSMs) to datasets, and tunable resolution, for fine- and coarse-graining sub-models while retaining insights. We include as an example our work simulating infection with Mycobacterium tuberculosis to demonstrate modeling choices and how predictions are made to generate new insights and test interventions. We discuss some of the current challenges of incorporating novel datasets, rigorously training computational biologists, and increasing the reach of MSMs. We also offer several promising future research directions of incorporating within-host dynamics into applications ranging from combinatorial treatment to epidemic response.
Collapse
|
10
|
Hu C, Qiu Y, Guo J, Cao Y, Li D, Du Y. An Oxygen Supply Strategy for Sonodynamic Therapy in Tuberculous Granuloma Lesions Using a Catalase-Loaded Nanoplatform. Int J Nanomedicine 2023; 18:6257-6274. [PMID: 37936950 PMCID: PMC10627092 DOI: 10.2147/ijn.s430019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Purpose Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (MTB) that remains a major global health challenge. One of the main obstacles to effective treatment is the heterogeneous microenvironment of TB granulomas. This study aimed to investigate the potential of a hypoxic remission-based strategy to enhance the outcome of tuberculosis treatment when implemented in combination with ultrasound. Methods A PLGA nanoparticle (LEV@CAT-NPs) loaded with levofloxacin (LEV) and catalase (CAT) was fabricated by a double emulsification method, and its physical characteristics, oxygen production capacity, drug release capacity, and biosafety were thoroughly investigated. The synergistic therapeutic effects of ultrasound (US)-mediated LEV@CAT-NPs were evaluated using an experimental mouse model of subcutaneous tuberculosis granuloma induced by Bacille Calmette-Guérin (BCG) as a substitute for MTB. Results LEV@CAT-NPs exhibited excellent oxygen production capacity, biosafety, and biocompatibility. Histological analysis revealed that ultrasound-mediated LEV@CAT-NPs could effectively remove bacteria from tuberculous granulomas, significantly alleviate the hypoxia state, reduce the necrotic area and inflammatory cells within the granuloma, and increase the penetration of dyes in granuloma tissues. The combined treatment also reduced the serum levels of inflammatory cytokines (eg, TNF-α, IL-6, and IL-8), and significantly downregulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). These results suggested that the synergistic treatment of ultrasound-mediated LEV@CAT-NPs effectively eradicated the bacterial infection and reversed the hypoxic microenvironment of tuberculous granulomas, further promoting tissue repair. Conclusion This study provides a non-invasive and new avenue for treating refractory tuberculosis infections. The potential role of regulating hypoxia within infected lesions as a therapeutic target for infection deserves further exploration in future studies.
Collapse
Affiliation(s)
- Can Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiajun Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuchao Cao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
11
|
Walter ND, Ernest JP, Dide-Agossou C, Bauman AA, Ramey ME, Rossmassler K, Massoudi LM, Pauly S, Al Mubarak R, Voskuil MI, Kaya F, Sarathy JP, Zimmerman MD, Dartois V, Podell BK, Savic RM, Robertson GT. Lung microenvironments harbor Mycobacterium tuberculosis phenotypes with distinct treatment responses. Antimicrob Agents Chemother 2023; 67:e0028423. [PMID: 37565762 PMCID: PMC10508168 DOI: 10.1128/aac.00284-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.
Collapse
Affiliation(s)
- Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Jackie P. Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Samantha Pauly
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Nutley, New Jersey, USA
| | | | | | | | - Brendan K. Podell
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Radojka M. Savic
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Lanni A, Iacobino A, Fattorini L, Giannoni F. Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand. Microorganisms 2023; 11:1511. [PMID: 37375013 PMCID: PMC10301435 DOI: 10.3390/microorganisms11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates aerobic and microaerophilic AR bacilli to transit into non-replicating (NR), drug-tolerant and extracellular stages. These stages, which do not have genetic mutations and are often referred to as persisters, are difficult to eradicate due to low drug penetration inside the caseum and mycobacterial cell walls. The sputum of TB patients also contains viable bacilli called differentially detectable (DD) cells that, unlike persisters, grow in liquid, but not in solid media. This review provides a comprehensive update on drug combinations killing in vitro AR and drug-tolerant bacilli (persisters and DD cells), and sterilizing Mycobacterium tuberculosis-infected BALB/c and caseum-forming C3HeB/FeJ mice. These observations have been important for testing new drug combinations in noninferiority clinical trials, in order to shorten the duration of current regimens against TB. In 2022, the World Health Organization, following the results of one of these trials, supported the use of a 4-month regimen for the treatment of drug-susceptible TB as a possible alternative to the current 6-month regimen.
Collapse
Affiliation(s)
| | | | | | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| |
Collapse
|
13
|
Budak M, Cicchese JM, Maiello P, Borish HJ, White AG, Chishti HB, Tomko J, Frye LJ, Fillmore D, Kracinovsky K, Sakal J, Scanga CA, Lin PL, Dartois V, Linderman JJ, Flynn JL, Kirschner DE. Optimizing tuberculosis treatment efficacy: Comparing the standard regimen with Moxifloxacin-containing regimens. PLoS Comput Biol 2023; 19:e1010823. [PMID: 37319311 PMCID: PMC10306236 DOI: 10.1371/journal.pcbi.1010823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.
Collapse
Affiliation(s)
- Maral Budak
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harris B. Chishti
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - L. James Frye
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Fillmore
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer Sakal
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Omollo C, Singh V, Kigondu E, Wasuna A, Agarwal P, Moosa A, Ioerger TR, Mizrahi V, Chibale K, Warner DF. Developing synergistic drug combinations to restore antibiotic sensitivity in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 65:AAC.02554-20. [PMID: 33619062 PMCID: PMC8092878 DOI: 10.1128/aac.02554-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a leading global cause of mortality owing to an infectious agent, accounting for almost one-third of antimicrobial resistance (AMR) deaths annually. We aimed to identify synergistic anti-TB drug combinations with the capacity to restore therapeutic efficacy against drug-resistant mutants of the causative agent, Mycobacterium tuberculosis We investigated combinations containing the known translational inhibitors, spectinomycin (SPT) and fusidic acid (FA), or the phenothiazine, chlorpromazine (CPZ), which disrupts mycobacterial energy metabolism. Potentiation of whole-cell drug efficacy was observed in SPT-CPZ combinations. This effect was lost against an M. tuberculosis mutant lacking the major facilitator superfamily (MFS) efflux pump, Rv1258c. Notably, the SPT-CPZ combination partially restored SPT efficacy against an SPT-resistant mutant carrying a g1379t point mutation in rrs, encoding the mycobacterial 16S ribosomal RNA. Combinations of SPT with FA, which targets the mycobacterial elongation factor G, exhibited potentiating activity against wild-type M. tuberculosis Moreover, this combination produced a modest potentiating effect against both FA-monoresistant and SPT-monoresistant mutants. Finally, combining SPT with the frontline anti-TB agents, rifampicin (RIF) and isoniazid, resulted in enhanced activity in vitro and ex vivo against both drug-susceptible M. tuberculosis and a RIF-monoresistant rpoB S531L mutant.These results support the utility of novel potentiating drug combinations in restoring antibiotic susceptibility of M. tuberculosis strains carrying genetic resistance to any one of the partner compounds.
Collapse
Affiliation(s)
- Charles Omollo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Pooja Agarwal
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Atica Moosa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Thomas R Ioerger
- Texas A&M University, Department of Computer Science, College Station, TX, 77843, USA
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
15
|
Sonnenkalb L, Carter JJ, Spitaleri A, Iqbal Z, Hunt M, Malone KM, Utpatel C, Cirillo DM, Rodrigues C, Nilgiriwala KS, Fowler PW, Merker M, Niemann S. Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis. THE LANCET. MICROBE 2023; 4:e358-e368. [PMID: 37003285 PMCID: PMC10156607 DOI: 10.1016/s2666-5247(23)00002-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 03/30/2023]
Abstract
BACKGROUND Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. METHODS For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. FINDINGS We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5-MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. INTERPRETATION Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. FUNDING Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Skłodowska-Curie Actions.
Collapse
Affiliation(s)
- Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Joshua James Carter
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Zamin Iqbal
- European Bioinformatics Institute, Cambridge, UK
| | - Martin Hunt
- European Bioinformatics Institute, Cambridge, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Rodrigues
- Department of Microbiology, P D Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | | | - Philip William Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Matthias Merker
- Evolution of the Resistome, Research Center Borstel Leibniz Lung Center, Borstel, Germany; National Reference Center, Research Center Borstel Leibniz Lung Center, Borstel, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany; National Reference Center, Research Center Borstel Leibniz Lung Center, Borstel, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| |
Collapse
|
16
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
18
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
19
|
|
20
|
Roubert C, Fontaine E, Upton AM. “Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol 2022; 12:1029044. [PMID: 36275029 PMCID: PMC9582839 DOI: 10.3389/fcimb.2022.1029044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Despite reinvigorated efforts in Tuberculosis (TB) drug discovery over the past 20 years, relatively few new drugs and candidates have emerged with clear utility against drug resistant TB. Over the same period, significant technological advances and learnings around target value have taken place. This has offered opportunities to re-assess the potential for optimization of previously discovered chemical matter against Mycobacterium tuberculosis (M.tb) and for reconsideration of clinically validated targets encumbered by drug resistance. A re-assessment of discarded compounds and programs from the “golden age of antibiotics” has yielded new scaffolds and targets against TB and uncovered classes, for example beta-lactams, with previously unappreciated utility for TB. Leveraging validated classes and targets has also met with success: booster technologies and efforts to thwart efflux have improved the potential of ethionamide and spectinomycin classes. Multiple programs to rescue high value targets while avoiding cross-resistance are making progress. These attempts to make the most of known classes, drugs and targets complement efforts to discover new chemical matter against novel targets, enhancing the chances of success of discovering effective novel regimens against drug-resistant TB.
Collapse
|
21
|
Van Rie A, Walker T, de Jong B, Rupasinghe P, Rivière E, Dartois V, Sonnenkalb L, Machado D, Gagneux S, Supply P, Dreyer V, Niemann S, Goig G, Meehan C, Tagliani E, Cirillo DM. Balancing access to BPaLM regimens and risk of resistance. THE LANCET. INFECTIOUS DISEASES 2022; 22:1411-1412. [PMID: 36007529 DOI: 10.1016/s1473-3099(22)00543-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Annelies Van Rie
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Timothy Walker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Bouke de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, University of Antwerp, Antwerp 2000, Belgium
| | - Praharshinie Rupasinghe
- Mycobacteriology Unit, Institute of Tropical Medicine, University of Antwerp, Antwerp 2000, Belgium
| | - Emmanuel Rivière
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp 2000, Belgium.
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Diana Machado
- Laboratório de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Philip Supply
- Institut Pasteur de Lille, U1019, UMR 8204, Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
| | - Galo Goig
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Conor Meehan
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
23
|
Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol 2022; 12:943545. [PMID: 36211964 PMCID: PMC9538507 DOI: 10.3389/fcimb.2022.943545] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023] Open
Abstract
Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.
Collapse
|
24
|
Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Int J Mol Sci 2022; 23:10669. [PMID: 36142582 PMCID: PMC9500838 DOI: 10.3390/ijms231810669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of drug-resistant mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), poses an increasing global threat that urgently demands the development of new potent anti-mycobacterial drugs. One of the approaches toward the identification of new drugs is fragment-based drug discovery (FBDD), which is the most ingenious among other drug discovery models, such as structure-based drug design (SBDD) and high-throughput screening. Specialized techniques, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and many others, are part of the drug discovery approach to combat the Mtb and NTM global menaces. Moreover, the primary drawbacks of traditional methods, such as the limited measurement of biomolecular toxicity and uncertain bioavailability evaluation, are successfully overcome by the FBDD approach. The current review focuses on the recognition of fragment-based drug discovery as a popular approach using virtual, computational, and biophysical methods to identify potent fragment molecules. FBDD focuses on designing optimal inhibitors against potential therapeutic targets of NTM and Mtb (PurC, ArgB, MmpL3, and TrmD). Additionally, we have elaborated on the challenges associated with the FBDD approach in the identification and development of novel compounds. Insights into the applications and overcoming the challenges of FBDD approaches will aid in the identification of potential therapeutic compounds to treat drug-sensitive and drug-resistant NTMs and Mtb infections.
Collapse
Affiliation(s)
| | | | | | | | - Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
25
|
Samuels AN, Wang ER, Harrison GA, Valenta JC, Stallings CL. Understanding the contribution of metabolism to Mycobacterium tuberculosis drug tolerance. Front Cell Infect Microbiol 2022; 12:958555. [PMID: 36072222 PMCID: PMC9441742 DOI: 10.3389/fcimb.2022.958555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly arduous. One challenge to effectively treating tuberculosis is that drug efficacy in vivo often fails to match drug efficacy in vitro. This is due to multiple reasons, including inadequate drug concentrations reaching Mtb at the site of infection and physiological changes of Mtb in response to host derived stresses that render the bacteria more tolerant to antibiotics. To more effectively and efficiently treat tuberculosis, it is necessary to better understand the physiologic state of Mtb that promotes drug tolerance in the host. Towards this end, multiple studies have converged on bacterial central carbon metabolism as a critical contributor to Mtb drug tolerance. In this review, we present the evidence that changes in central carbon metabolism can promote drug tolerance, depending on the environment surrounding Mtb. We posit that these metabolic pathways could be potential drug targets to stymie the development of drug tolerance and enhance the efficacy of current antimicrobial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
26
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
27
|
Kreutzfeldt KM, Jansen RS, Hartman TE, Gouzy A, Wang R, Krieger IV, Zimmerman MD, Gengenbacher M, Sarathy JP, Xie M, Dartois V, Sacchettini JC, Rhee KY, Schnappinger D, Ehrt S. CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nat Commun 2022; 13:2203. [PMID: 35459278 PMCID: PMC9033802 DOI: 10.1038/s41467-022-29832-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2022] [Indexed: 12/23/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic inactivation of cinA accelerated killing of Mtb by four antibiotics in clinical use: isoniazid, ethionamide, delamanid and pretomanid. Mtb ΔcinA was killed rapidly in conditions known to impede the efficacy of isoniazid, such as during nutrient starvation, during persistence in a caseum mimetic, in activated macrophages and during chronic mouse infection. Deletion of CinA also increased in vivo killing of Mtb by BPaL, a combination of pretomanid, bedaquiline and linezolid that is used to treat highly drug-resistant TB. Genetic and drug metabolism studies suggest that CinA mediates drug tolerance via cleavage of NAD-drug adducts.
Collapse
Affiliation(s)
- Kaj M Kreutzfeldt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Robert S Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Department of Microbiology, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Travis E Hartman
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Kokesch-Himmelreich J, Treu A, Race AM, Walter K, Hölscher C, Römpp A. Do Anti-tuberculosis Drugs Reach Their Target?─High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Anal Chem 2022; 94:5483-5492. [PMID: 35344339 DOI: 10.1021/acs.analchem.1c03462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model that─in contrast to regular inbred mice─strongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 μm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 μm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
Collapse
Affiliation(s)
- Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany
| | - Kerstin Walter
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Christoph Hölscher
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|
29
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
30
|
Wang W, Guo H, Lin S, Xiao X, Liu Y, Wang Y, Zhou D. Biosafety materials for tuberculosis treatment. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Zheng J, Long X, Chen H, Ji Z, Shu B, Yue R, Liao Y, Ma S, Qiao K, Liu Y, Liao Y. Photoclick Reaction Constructs Glutathione-Responsive Theranostic System for Anti-Tuberculosis. Front Mol Biosci 2022; 9:845179. [PMID: 35237665 PMCID: PMC8883117 DOI: 10.3389/fmolb.2022.845179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a virulent form of an infectious disease that causes a global burden due to its high infectivity and fatality rate, especially the irrepressible threats of latent infection. Constructing an efficient strategy for the prevention and control of TB is of great significance. Fortunately, we found that granulomas are endowed with higher reducibility levels possibly caused by internal inflammation and a relatively enclosed microenvironment. Therefore, we developed the first targeted glutathione- (GSH-) responsive theranostic system (RIF@Cy5.5-HA-NG) for tuberculosis with a rifampicin- (RIF-) loaded near-infrared emission carrier, which was constructed by photoclick reaction-actuated hydrophobic-hydrophobic interaction, enabling the early diagnosis of tuberculosis through granulomas-tracking. Furthermore, the loaded rifampicin was released through the dissociation of disulfide bond by the localized GSH in granulomas, realizing the targeted tuberculosis therapy and providing an especially accurate treatment mapping for tuberculosis. Thus, this targeted theranostic strategy for tuberculosis exhibits the potential to realize both granulomas-tracking and anti-infection of tuberculosis.
Collapse
Affiliation(s)
- Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xun Long
- Department of Science and Education, The Third People’s Hospital of Bijie City, Bijie, China
| | - Hao Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Rui Yue
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yechun Liao
- Department of Science and Education, The Third People’s Hospital of Bijie City, Bijie, China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Kun Qiao
- Department of Thoracic Surgery, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Ying Liu
- Department of Science and Education, The Third People’s Hospital of Bijie City, Bijie, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Infectious Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
A rabbit model to study antibiotic penetration at the site of infection for non-tuberculous mycobacterial lung disease: macrolide case study. Antimicrob Agents Chemother 2022; 66:e0221221. [PMID: 35099272 DOI: 10.1128/aac.02212-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics, and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic rather than pharmacokinetic factors. Our results pave the way towards the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multi-drug combinations, to enable the prioritization of promising regimens for clinical trials.
Collapse
|
33
|
Lee DG, Kim HJ, Lee Y, Kim JH, Hwang Y, Ha J, Ryoo S. 10-DEBC Hydrochloride as a Promising New Agent against Infection of Mycobacterium abscessus. Int J Mol Sci 2022; 23:591. [PMID: 35054777 PMCID: PMC8775589 DOI: 10.3390/ijms23020591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections. Its resistance to current antimicrobial drugs makes it the most difficult non-tuberculous mycobacteria (NTM) to treat with a treatment success rate of 45.6%. Therefore, there is a need for new therapeutic agents against M. abscessus. We identified 10-DEBC hydrochloride (10-DEBC), a selective AKT inhibitor that exhibits inhibitory activity against M. abscessus. To evaluate the potential of 10-DEBC as a treatment for lung disease caused by M. abscessus, we measured its effectiveness in vitro. We established the intracellular activity of 10-DEBC against M. abscessus in human macrophages and human embryonic cell-derived macrophages (iMACs). 10-DEBC significantly inhibited the growth of wild-type M. abscessus and clinical isolates and clarithromycin (CLR)-resistant M. abscessus strains. 10-DEBC's drug efficacy did not have cytotoxicity in the infected macrophages. In addition, 10-DEBC operates under anaerobic conditions without replication as well as in the presence of biofilms. The alternative caseum binding assay is a unique tool for evaluating drug efficacy against slow and nonreplicating bacilli in their native caseum media. In the surrogate caseum, the mean undiluted fraction unbound (fu) for 10-DEBC is 5.696. The results of an in vitro study on the activity of M. abscessus suggest that 10-DEBC is a potential new drug for treating M. abscessus infections.
Collapse
Affiliation(s)
- Da-Gyum Lee
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| | - Hye-Jung Kim
- New Drug Development Center, KBIO OSONG Medical Innovation Foundation, Cheongju 28160, Korea; (H.-J.K.); (J.H.)
| | - Youngsun Lee
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju 28160, Korea; (Y.L.); (J.-H.K.)
| | - Jung-Hyun Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju 28160, Korea; (Y.L.); (J.-H.K.)
| | - Yoohyun Hwang
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| | - Jeongyeop Ha
- New Drug Development Center, KBIO OSONG Medical Innovation Foundation, Cheongju 28160, Korea; (H.-J.K.); (J.H.)
| | - Sungweon Ryoo
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| |
Collapse
|
34
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
35
|
Kim S, Louie A, Drusano GL, Almoslem M, Kim S, Myrick J, Nole J, Duncanson B, Peloquin CA, Scanga CA, Yamada W, Neely M, Schmidt S. Evaluating the effect of clofazimine against Mycobacterium tuberculosis when given alone or in combination with pretomanid, bedaquiline or linezolid. Int J Antimicrob Agents 2021; 59:106509. [PMID: 34958863 DOI: 10.1016/j.ijantimicag.2021.106509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
Clofazimine (CFZ) has been regaining prominence for treating tuberculosis in recent years. However, as a single drug, it shows limited efficacy and optimal combination partners have not been identified. Therefore, the objective of our analysis was to evaluate the efficacy of CFZ-containing two-drug regimen with pretomanid (PMD), bedaquiline (BDQ) or linezolid (LZD) by determining: i) their pharmacodynamic (PD) mode of interaction against Mycobacterium tuberculosis (Mtb) strain H37Rv in log- and acid-metabolic states, and Mtb strain 18b in a non-replicating persister metabolic state, ii) to predict bacterial cell kill of the drugs alone and in combination, and iii) to evaluate the relationship between the interaction mode and bacterial cell kill amount. The results of our Greco universal response surface analysis showed that CFZ was at least additive with a clear trend towards synergy when combined with PMD, BDQ, and LZD against Mtb in all explored metabolic states under in vitro checkerboard assay conditions. They further showed that all 2-drug combination regimens exerted more bacterial kill than any of the drugs alone. CFZ alone showed the least antimicrobial efficacy amongst the evaluated drugs and there was a lack of correlation between the mode of interaction and the amount of bacterial kill. However, we may underestimate the effect of CFZ in this screening approach due to limited in vitro study duration and neglect of target site accumulation.
Collapse
Affiliation(s)
- Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Mohammed Almoslem
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA; Department of Clinical Pharmacy, University of Ha'il, Ha'il, Kingdom of Saudi Arabia
| | - Soyoung Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Jenny Myrick
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Jocelyn Nole
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Brandon Duncanson
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter Yamada
- Laboratory of Applied Pharmacokinetics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA.
| |
Collapse
|
36
|
Interleukin-13 overexpressing mice represent an advanced pre-clinical model for detecting the distribution of anti-mycobacterial drugs within centrally necrotizing granulomas. Antimicrob Agents Chemother 2021; 66:e0158821. [PMID: 34871095 PMCID: PMC9211424 DOI: 10.1128/aac.01588-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Mycobacterium tuberculosis-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the preclinical validation of novel drug candidates. M. tuberculosis-infected interleukin-13-overexpressing (IL-13tg) mice develop a TB pathology very similar to patients and, in contrast to other mouse models, also share pathogenetic mechanisms. Accordingly, IL-13tg animals represent an ideal model for analyzing the penetration of novel anti-TB drugs into various compartments of necrotic granulomas by matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MS imaging). In the present study, we evaluated the suitability of BALB/c IL-13tg mice for determining the antibiotic distribution within necrotizing lesions. To this end, we established a workflow based on the inactivation of M. tuberculosis by gamma irradiation while preserving lung tissue integrity and drug distribution, which is essential for correlating drug penetration with lesion pathology. MALDI-MS imaging analysis of clofazimine, pyrazinamide, and rifampicin revealed a drug-specific distribution within different lesion types, including cellular granulomas, developing in BALB/c wild-type mice, and necrotic granulomas in BALB/c IL-13tg animals, emphasizing the necessity of preclinical models reflecting human pathology. Most importantly, our study demonstrates that BALB/c IL-13tg mice recapitulate the penetration of antibiotics into human lesions. Therefore, our workflow in combination with the IL-13tg mouse model provides an improved and accelerated evaluation of novel anti-TB drugs and new regimens in the preclinical stage.
Collapse
|
37
|
Tanner L, Mashabela GT, Omollo CC, de Wet TJ, Parkinson CJ, Warner DF, Haynes RK, Wiesner L. Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiol Spectr 2021; 9:e0043421. [PMID: 34585951 PMCID: PMC8557888 DOI: 10.1128/spectrum.00434-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic repertoire for tuberculosis (TB) remains limited despite the existence of many TB drugs that are highly active in in vitro models and possess clinical utility. Underlying the lack of efficacy in vivo is the inability of TB drugs to penetrate microenvironments inhabited by the causative agent, Mycobacterium tuberculosis, including host alveolar macrophages. Here, we determined the ability of the phenoxazine PhX1 previously shown to be active against M. tuberculosis in vitro to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. We also investigated the extent of permeation into uninfected and M. tuberculosis-infected human macrophage-like Tamm-Horsfall protein 1 (THP-1) cells directly and by comparing to results obtained in vitro in synergy assays. Our data indicate that PhX1 (4,750 ± 127.2 ng/ml) penetrates more effectively into THP-1 cells than do the clinically used anti-TB agents, rifampin (3,050 ± 62.9 ng/ml), moxifloxacin (3,374 ± 48.7 ng/ml), bedaquiline (4,410 ± 190.9 ng/ml), and linezolid (770 ± 14.1 ng/ml). Compound efficacy in infected cells correlated with intracellular accumulation, reinforcing the perceived importance of intracellular penetration as a key drug property. Moreover, we detected synergies deriving from redox-stimulatory combinations of PhX1 or clofazimine with the novel prenylated amino-artemisinin WHN296. Finally, we used compound synergies to elucidate the relationship between compound intracellular accumulation and efficacy, with PhX1/WHN296 synergy levels shown to predict drug efficacy. Collectively, our data support the utility of the applied assays in identifying in vitro active compounds with the potential for clinical development. IMPORTANCE This study addresses the development of novel therapeutic compounds for the eventual treatment of drug-resistant tuberculosis. Tuberculosis continues to progress, with cases of Mycobacterium tuberculosis (M. tuberculosis) resistance to first-line medications increasing. We assess new combinations of drugs with both oxidant and redox properties coupled with a third partner drug, with the focus here being on the potentiation of M. tuberculosis-active combinations of compounds in the intracellular macrophage environment. Thus, we determined the ability of the phenoxazine PhX1, previously shown to be active against M. tuberculosis in vitro, to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. In addition, the extent of permeation into human macrophage-like THP-1 cells and H37Rv-infected THP-1 cells was measured via mass spectrometry and compared to in vitro two-dimensional synergy and subsequent intracellular efficacy. Collectively, our data indicate that development of new drugs will be facilitated using the methods described herein.
Collapse
Affiliation(s)
- Lloyd Tanner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gabriel T. Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charles C. Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy J. de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Kim SH, Shin YM, Yoo JY, Cho JY, Kang H, Lee H, Choe KH, Lee KM, Yang B. Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes. J Pers Med 2021; 11:jpm11111081. [PMID: 34834433 PMCID: PMC8622689 DOI: 10.3390/jpm11111081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cavitary pulmonary tuberculosis (TB) is associated with poor outcomes, treatment recurrence, higher transmission rates, and the development of drug resistance. However, reports on its clinical characteristics, associated factors, and treatment outcomes are lacking. Hence, this study sought to evaluate the clinical factors associated with cavitary pulmonary TB and its treatment outcomes. We retrospectively evaluated 410 patients with drug-susceptible pulmonary TB in a university hospital in Korea between 2014 and 2019. To evaluate the factors associated with cavitary TB, multivariable logistic regression was performed with adjustments for potential confounders. We also compared the treatment outcomes between patients with cavitary TB and those without cavitary TB. Of the 410 patients, 244 (59.5%) had non-cavitary TB and 166 (40.5%) had cavitary TB. Multivariable logistic analysis with forward selection method showed that body mass index (BMI) (adjusted OR = 0.88, 95% CI: 0.81–0.97), previous history of TB (adjusted OR = 3.45, 95% CI: 1.24–9.59), ex- or current smoker (adjusted OR = 1.77, 95% CI: 1.01–3.13), diabetes mellitus (adjusted OR = 2.72, 95% CI: 1.36–5.44), and positive results on the initial sputum acid-fast bacilli (AFB) smear (adjusted OR = 2.24, 95% CI: 1.26–3.98) were significantly associated with cavitary TB. Although treatment duration was significantly longer in patients with cavitary TB than in those with non-cavitary TB (248 (102–370 days) vs. 202 (98–336 days), p < 0.001), the recurrence rate after successful treatment was significantly higher in the patients with cavitary TB than in those with non-cavitary TB (0.4% vs. 3.0% p = 0.042). In conclusion, ex- or current smoker, lower BMI, previous history of TB, diabetes mellitus, and positivity of the initial AFB smear were associated with cavitary TB. The patients with cavitary TB had more AFB culture-positive results at 2 months, longer treatment duration, and higher recurrence rates than those with non-cavitary TB.
Collapse
Affiliation(s)
- Sun-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
| | - Yoon Mi Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
| | - Jin Young Yoo
- Department of Radiology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
| | - Jun Yeun Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
| | - Hyeran Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Korea;
| | - Kang Hyeon Choe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
| | - Ki Man Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
| | - Bumhee Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-H.K.); (Y.M.S.); (J.Y.C.); (H.K.); (K.H.C.); (K.M.L.)
- Correspondence:
| |
Collapse
|
39
|
Garcia-Cremades M, Solans BP, Strydom N, Vrijens B, Pillai GC, Shaffer C, Thomas B, Savic RM. Emerging Therapeutics, Technologies, and Drug Development Strategies to Address Patient Nonadherence and Improve Tuberculosis Treatment. Annu Rev Pharmacol Toxicol 2021; 62:197-210. [PMID: 34591605 DOI: 10.1146/annurev-pharmtox-041921-074800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imperfect medication adherence remains the biggest predictor of treatment failure for patients with tuberculosis. Missed doses during treatment lead to relapse, tuberculosis resistance, and further spread of disease. Understanding individual patient phenotypes, population pharmacokinetics, resistance development, drug distribution to tuberculosis lesions, and pharmacodynamics at the site of infection is necessary to fully measure the impact of adherence on patient outcomes. To decrease the impact of expected variability in drug intake on tuberculosis outcomes, an improvement in patient adherence and new forgiving regimens that protect against missed doses are needed. In this review, we summarize emerging technologies to improve medication adherence in clinical practice and provide suggestions on how digital adherence technologies can be incorporated in clinical trials and practice and the drug development pipeline that will lead to more forgiving regimens and benefit patients suffering from tuberculosis. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Maria Garcia-Cremades
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA;
| | - Belen P Solans
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA;
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA;
| | - Bernard Vrijens
- AARDEX Group, B-4102 Liège Science Park, Belgium.,Department of Public Health, University of Liège, B-4000 Liège, Belgium
| | - Goonaseelan Colin Pillai
- Division of Clinical Pharmacology, University of Cape Town, Observatory 7925, South Africa.,CP+ Associates GmbH, Basel 4102, Switzerland
| | - Craig Shaffer
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA;
| | | | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
40
|
Ernest JP, Sarathy J, Wang N, Kaya F, Zimmerman MD, Strydom N, Wang H, Xie M, Gengenbacher M, Via LE, Barry CE, Carter CL, Savic RM, Dartois V. Lesion Penetration and Activity Limit the Utility of Second-Line Injectable Agents in Pulmonary Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0050621. [PMID: 34252307 PMCID: PMC8448094 DOI: 10.1128/aac.00506-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Amikacin and kanamycin are second-line injectables used in the treatment of multidrug-resistant tuberculosis (MDR-TB) based on the clinical utility of streptomycin, another aminoglycoside and first-line anti-TB drug. While streptomycin was tested as a single agent in the first controlled TB clinical trial, introduction of amikacin and kanamycin into MDR-TB regimens was not preceded by randomized controlled trials. A recent large retrospective meta-analysis revealed that compared with regimens without any injectable drug, amikacin provided modest benefits, and kanamycin was associated with worse outcomes. Although their long-term use can cause irreversible ototoxicity, they remain part of MDR-TB regimens because they have a role in preventing emergence of resistance to other drugs. To quantify the contribution of amikacin and kanamycin to second-line regimens, we applied two-dimensional matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging in large lung lesions, quantified drug exposure in lung and in lesions of rabbits with active TB, and measured the concentrations required to kill or inhibit growth of the resident bacterial populations. Using these metrics, we applied site-of-action pharmacokinetic and pharmacodynamic (PK-PD) concepts and simulated drug coverage in patients' lung lesions. The results provide a pharmacological explanation for the limited clinical utility of both agents and reveal better PK-PD lesion coverage for amikacin than kanamycin, consistent with retrospective data of contribution to treatment success. Together with recent mechanistic studies dissecting antibacterial activity from aminoglycoside ototoxicity, the limited but rapid penetration of streptomycin, amikacin, and kanamycin to the sites of TB disease supports the development of analogs with improved efficacy and tolerability.
Collapse
Affiliation(s)
- Jacqueline P. Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ning Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Han Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack School of Medicine, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Claire L. Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Radojka M. Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack School of Medicine, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
41
|
Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrob Agents Chemother 2021; 65:e0002421. [PMID: 34228540 PMCID: PMC8370215 DOI: 10.1128/aac.00024-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease—lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an “effect” compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.
Collapse
|
42
|
Aldridge BB, Barros-Aguirre D, Barry CE, Bates RH, Berthel SJ, Boshoff HI, Chibale K, Chu XJ, Cooper CB, Dartois V, Duncan K, Fotouhi N, Gusovsky F, Hipskind PA, Kempf DJ, Lelièvre J, Lenaerts AJ, McNamara CW, Mizrahi V, Nathan C, Olsen DB, Parish T, Petrassi HM, Pym A, Rhee KY, Robertson GT, Rock JM, Rubin EJ, Russell B, Russell DG, Sacchettini JC, Schnappinger D, Schrimpf M, Upton AM, Warner P, Wyatt PG, Yuan Y. The Tuberculosis Drug Accelerator at year 10: what have we learned? Nat Med 2021; 27:1333-1337. [PMID: 34226736 PMCID: PMC10478072 DOI: 10.1038/s41591-021-01442-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Tuberculosis Drug Accelerator, an experiment designed to facilitate collaboration in TB drug discovery by breaking down barriers among competing labs and institutions, has reached the 10-year landmark. We review the consortium’s achievements, advantages and limitations and advocate for application of similar models to other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin-Jie Chu
- Global Health Drug Discovery Institute, Beijing, China
| | | | - Véronique Dartois
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, NJ, USA
| | - Ken Duncan
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY, USA
| | | | | | | | | | | | - Case W McNamara
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - Tanya Parish
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Kyu Y Rhee
- Weill Cornell Medicine, New York, NY, USA
| | | | | | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Betsy Russell
- Bill & Melinda Gates Medical Research Institute, Boston, MA, USA
| | | | | | | | | | | | - Peter Warner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Ying Yuan
- Global Health Drug Discovery Institute, Beijing, China
| |
Collapse
|
43
|
Vashakidze SA, Gogishvili SG, Nikolaishvili KG, Avaliani ZR, Chandrakumaran A, Gogishvili GS, Magee M, Blumberg HM, Kempker RR. Adjunctive surgery versus medical treatment among patients with cavitary multidrug-resistant tuberculosis. Eur J Cardiothorac Surg 2021; 60:1279-1285. [PMID: 34297819 DOI: 10.1093/ejcts/ezab337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Surgical resection is recommended as adjunctive treatment for multidrug-resistant (MDR) tuberculosis (TB) in certain scenarios; however, data are limited. We sought to evaluate the impact of surgery by comparing TB outcomes among patients with cavitary disease who received medical versus combined medical and surgical treatment. METHODS A cohort of all patients with cavitary MDR or extensively drug-resistant (XDR) TB treated in Tbilisi, Georgia, between 2008 and 2012. Patients meeting indications for surgery underwent adjunctive resection in addition to medical treatment. We compared TB outcomes (proportions achieving cure/complete) among patients who received adjunctive surgery to those who received medical treatment alone using an adjusted robust Poisson regression. RESULTS Among 408 patients, 299 received medical treatment alone and 109 combined medical and surgical treatment. Patients in the non-surgical group were older and had higher rates of tobacco and alcohol use and bilateral disease compared to the surgical group. Patients in the surgical group had higher rates of XDR disease (28% vs 15%). Favourable outcomes were higher among the surgical versus non-surgical group cohort (76% vs 41%). After adjusting for multiple factors, the association between adjunctive resection and favourable outcome remained (adjusted risk ratio 1.6, 95% confidence interval 1.3-2.0); the relationship was also observed in secondary models that excluded patients with bilateral disease (contraindication for surgery) and patients receiving <6 months of treatment. Major postoperative complications occurred among 8 patients (7%) with no postoperative mortality. CONCLUSIONS Adjunctive surgery is safe and may improve the effectiveness of treatment among select patients with cavitary MDR- and XDR-TB.
Collapse
Affiliation(s)
- Sergo A Vashakidze
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia.,The University of Georgia, Tbilisi, Georgia
| | - Shota G Gogishvili
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Ketino G Nikolaishvili
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza R Avaliani
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | | | - Giorgi Sh Gogishvili
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Mathew Magee
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henry M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia Emory University, Atlanta, GA, USA
| | - Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
Mondoni M, Saderi L, Sotgiu G. Novel treatments in multidrug-resistant tuberculosis. Curr Opin Pharmacol 2021; 59:103-115. [PMID: 34186381 DOI: 10.1016/j.coph.2021.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The management of multidrug-resistant tuberculosis (TB) is associated with low treatment success, high mortality and failure rates. New drugs and novel short-therapeutic regimens have only recently helped overcome these obstacles. We carried out a narrative literature review aimed at summarizing the scientific evidence on the recent therapeutic advances in the field of drug-resistant TB. Experimental and observational studies on novel (i.e. bedaquiline, delamanid, pretomanid) drugs and novel regimens and the main pharmacological characteristics of the newest compounds are described. We also highlight the main scientific evidence on therapeutic strategies complementary to standard chemotherapy (i.e. new approaches to drug delivery, host-directed therapy, surgery, new collapse therapy, rehabilitation, and palliative care).
Collapse
Affiliation(s)
- Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy.
| |
Collapse
|
45
|
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. NATURE NANOTECHNOLOGY 2021; 16:369-384. [PMID: 33753915 DOI: 10.1038/s41565-021-00866-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/26/2021] [Indexed: 05/20/2023]
Abstract
Infectious diseases are a major driver of morbidity and mortality globally. Treatment of malaria, tuberculosis and human immunodeficiency virus infection are particularly challenging, as indicated by the ongoing transmission and high mortality associated with these diseases. The formulation of new and existing drugs in nano-sized carriers promises to overcome several challenges associated with the treatment of these diseases, including low on-target bioavailability, sub-therapeutic drug accumulation in microbial sanctuaries and reservoirs, and low patient adherence due to drug-related toxicities and extended therapeutic regimens. Further, nanocarriers can be used for formulating vaccines, which represent a major weapon in our fight against infectious diseases. Here we review the current burden of infectious diseases with a focus on major drivers of morbidity and mortality. We then highlight how nanotechnology could aid in improving existing treatment modalities. We summarize our progress so far and outline potential future directions to maximize the impact of nanotechnology on the global population.
Collapse
Affiliation(s)
- Ameya R Kirtane
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Malvika Verma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paramesh Karandikar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
46
|
Therapeutic Potential of Fosmanogepix (APX001) for Intra-abdominal Candidiasis: from Lesion Penetration to Efficacy in a Mouse Model. Antimicrob Agents Chemother 2021; 65:AAC.02476-20. [PMID: 33468476 DOI: 10.1128/aac.02476-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common yet underappreciated forms of invasive candidiasis. IAC is difficult to treat, and therapeutic failure and drug-resistant breakthrough infections are common in some institutions despite the use of echinocandins as first-line agents. Fosmanogepix (FMGX, formerly APX001) is a first-in-class antifungal prodrug that can be administered both intravenously and orally. FMGX is currently in phase 2 clinical development for the treatment of life-threatening invasive fungal infections. To explore the pharmacological properties and therapeutic potential of FMGX for IAC, we evaluated both drug penetration and efficacy of the active moiety manogepix (MGX, formerly APX001A) in liver tissues in a clinically relevant IAC mouse model infected with Candida albicans Matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) and laser capture microdissection (LCM)-directed absolute drug quantitation were employed to evaluate drug penetration into liver abscess lesions both spatially and quantitatively. The partitioning of MGX into lesions occurred slowly after a single dose; however, robust accumulation in the lesion was achieved after 3 days of repeated dosing. Associated with this drug penetration pattern, reduction in fungal burden and clearance in the liver were observed in mice receiving the multiday FMGX regimen. In comparison, administration of micafungin resulted in marginal reduction in fungal burden at the end of 4 days of treatment. These results suggest that FMGX is a promising candidate for the treatment of IAC.
Collapse
|
47
|
Cicchese JM, Sambarey A, Kirschner D, Linderman JJ, Chandrasekaran S. A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs. Sci Rep 2021; 11:5643. [PMID: 33707554 PMCID: PMC7971003 DOI: 10.1038/s41598-021-84827-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designing combination therapies by linking a machine-learning model, INDIGO-MTB, which predicts in vitro drug interactions using drug transcriptomics, with a multi-scale model of drug PK/PD and pathogen-immune interactions called GranSim. We calculate an in vivo drug interaction score (iDIS) from dynamics of drug diffusion, spatial distribution, and activity within lesions against various pathogen sub-populations. The iDIS of drug regimens evaluated against non-replicating bacteria significantly correlates with efficacy metrics from clinical trials. Our approach identifies mechanisms that can amplify synergistic or mitigate antagonistic drug interactions in vivo by modulating the relative distribution of drugs. Our mechanistic framework enables efficient evaluation of in vivo drug interactions and optimization of combination therapies.
Collapse
Affiliation(s)
- Joseph M. Cicchese
- grid.214458.e0000000086837370Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Awanti Sambarey
- grid.214458.e0000000086837370Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Denise Kirschner
- grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Jennifer J. Linderman
- grid.214458.e0000000086837370Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Sriram Chandrasekaran
- grid.214458.e0000000086837370Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
48
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
49
|
The Funnel: a Screening Technique for Identifying Optimal Two-Drug Combination Chemotherapy Regimens. Antimicrob Agents Chemother 2021; 65:AAC.02172-20. [PMID: 33199386 DOI: 10.1128/aac.02172-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis drug discovery effort has generated a substantial number of new/repurposed drugs for therapy for this pathogen. The arrival of these drugs is welcome, but another layer of difficulty has emerged. Single agent therapy is insufficient for patients with late-stage tuberculosis because of resistance emergence. To achieve our therapeutic ends, it is requisite to identify optimal combination regimens. These regimens go through a lengthy and expensive evaluative process. If we have a modest group of 6 to 8 new or repurposed agents, this translates into 15 to 28 possible 2-drug combinations. There is neither time nor resources to give an extensive evaluation for all combinations. We sought a screening procedure that would identify combinations that had a high likelihood of achieving good bacterial burden decline. We examined pretomanid, moxifloxacin, linezolid, and bedaquiline in log-phase growth, acid-phase growth, and nonreplicative persister (NRP) phase in the Greco interaction model. We employed the interaction term α and the calculated bacterial burden decline as metrics to rank different regimens in different metabolic states. No relationship was found between α and bacterial kill. We chose bacterial kill as the prime metric. The combination of pretomanid plus moxifloxacin emerged as the clear frontrunner, as the largest bacterial declines were seen in log phase and acid phase with this regimen and it was second best in NRP phase. Bedaquiline also produced good kill. This screening process may identify optimal combinations that can be further evaluated in both the hollow-fiber infection model and in animal models of Mycobacterium tuberculosis infection.
Collapse
|
50
|
Van Bocxlaer K, Croft SL. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med Chem 2021; 12:472-482. [PMID: 34041488 PMCID: PMC8128043 DOI: 10.1039/d0md00343c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacological efficacy is obtained when adequate concentrations of a potent drug reach the target site. In cutaneous leishmaniasis, a heterogeneous disease characterised by a variety of skin manifestations from simple nodules, skin discoloration, plaques to extensive disseminated forms, the parasites are found in the dermal layers of the skin. Treatment thus involves the release of the active compound from the formulation (administered either topically or systemically), it's permeation into the skin, accumulation by the local macrophages and further transport into the phagolysosome of the macrophage. The pharmacodynamic activity of a drug against the parasite is relatively straight forward to evaluate both in vivo and in vitro. The pharmacokinetic processes taking place inside the skin are more complex to elucidate due to the multi-lamellar structure of the skin, heterogeneous distribution of drugs within the tissue, the difficulty of accessing the site of infection complicating sampling and the lack of surrogate markers reflecting the activity of a drug in the skin. This review will discuss the difficulties encountered when investigating drug distribution, PK PD relationships and efficacy in the skin with a focus on cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Biology, York Biomedical Research Institute, University of York York YO10 5DD UK +44 (0) 19 0432 8855
| | - Simon L Croft
- Department of Infection Biology, London School of Hygiene & Tropical Medicine London WC1E 7HT UK
| |
Collapse
|