1
|
Dubey AK, Sardana D, Verma T, Alam P, Chattopadhyay A, Nandini SS, Khamari B, Bulagonda EP, Sen S, Nandi D. Quantifying Membrane Alterations with Tailored Fluorescent Dyes: A Rapid Antibiotic Resistance Profiling Methodology. ACS Infect Dis 2024; 10:2836-2859. [PMID: 39024306 DOI: 10.1021/acsinfecdis.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.
Collapse
Affiliation(s)
- Ashim Kumar Dubey
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Deepika Sardana
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taru Verma
- Centre for BioSystems, Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
2
|
Soler-Orenes JA, Monari A, Miranda MA, Hernández-Gil J, Lhiaubet-Vallet V. Environmentally sensitive fluorescence of the topical retinoid adapalene. Front Chem 2024; 12:1438751. [PMID: 39040091 PMCID: PMC11260622 DOI: 10.3389/fchem.2024.1438751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Intrinsic fluorescence of drugs brings valuable information on their localization in the organism and their interaction with key biomolecules. In this work, we investigate the absorption and emission properties of the topical retinoid adapalene in different solvents and biological media. While the UVA/UVB absorption band does not exhibit any significant solvent-dependent behavior, a strong positive solvatochromism is observed for the emission. These results are in line with molecular modeling and simulations that show the presence of two quasi-degenerate states, i.e., a local π-π* and an intermolecular charge-transfer (ICT) state. However, molecular modeling also revealed that, whatever the solvent, at the corresponding equilibrium geometry the lowest and emissive excited state is the local π-π*. Finally, the potential of adapalene to act as a biological probe is demonstrated using albumin, DNA and micelles.
Collapse
Affiliation(s)
- Juan A. Soler-Orenes
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Miguel A. Miranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Hernández-Gil
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
3
|
Squire S, Sebghati S, Hammond MC. Cytoplasmic Accumulation and Permeability of Antibiotics in Gram Positive and Gram Negative Bacteria Visualized in Real-Time via a Fluorogenic Tagging Strategy. ACS Chem Biol 2024; 19:3-8. [PMID: 38096425 PMCID: PMC10805102 DOI: 10.1021/acschembio.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
In this study, we describe the first real-time live cell assay for compound accumulation and permeability in both Gram positive and Gram negative bacteria. The assay utilizes a novel fluorogenic tagging strategy that permits direct visualization of compound accumulation dynamics in the cytoplasm of live cells, unobscured by washing or other processing steps. Quantitative differences could be reproducibly measured by flow cytometry at compound concentrations below the limit of detection for MS-based approaches. We establish the fluorogenic assay in E. coli and B. subtilis and compare the intracellular accumulation of two antibiotics, ciprofloxacin and ampicillin, with related pharmacophores in these bacteria.
Collapse
Affiliation(s)
- Scott
O. Squire
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Sepehr Sebghati
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Ming C. Hammond
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
4
|
Graßl F, Konrad MMB, Krüll J, Pezerovic A, Zähnle L, Burkovski A, Heinrich MR. Tuning the Polarity of Antibiotic-Cy5 Conjugates Enables Highly Selective Labeling of Binding Sites. Chemistry 2023; 29:e202301208. [PMID: 37247408 DOI: 10.1002/chem.202301208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant bacteria pose a major threat to global health, even as newly introduced antibiotics continue to lose their therapeutic value. Against this background, deeper insights into bacterial interaction with antibiotic drugs are urgently required, whereas fluorescently labeled drug conjugates can serve as highly valuable tools. Herein, the preparation and biological evaluation of 13 new fluorescent antibiotic-Cy5 dye conjugates is described, in which the tuning of the polarity of the Cy5 dye proved to be a key element to achieve highly favorable properties for various fields of application.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maike M B Konrad
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Azra Pezerovic
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Leon Zähnle
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Velema WA. Exploring antibiotic resistance with chemical tools. Chem Commun (Camb) 2023; 59:6148-6158. [PMID: 37039397 PMCID: PMC10194278 DOI: 10.1039/d3cc00759f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Antibiotic resistance is an enormous problem that is accountable for over a million deaths annually, with numbers expected to significantly increase over the coming decades. Although some of the underlying causes leading up to antibiotic resistance are well understood, many of the molecular processes involved remain elusive. To better appreciate at a molecular level how resistance emerges, customized chemical biology tools can offer a solution. This Feature Article attempts to provide an overview of the wide variety of tools that have been developed over the last decade, by highlighting some of the more illustrative examples. These include the use of fluorescent, photoaffinity and activatable antibiotics and bacterial components to start to unravel the molecular mechanisms involved in resistance. The antibiotic crisis is an eminent global threat and requires the continuous development of creative chemical tools to dissect and ultimately counteract resistance.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Zhang B, Phetsang W, Stone MRL, Kc S, Butler MS, Cooper MA, Elliott AG, Łapińska U, Voliotis M, Tsaneva-Atanasova K, Pagliara S, Blaskovich MAT. Synthesis of vancomycin fluorescent probes that retain antimicrobial activity, identify Gram-positive bacteria, and detect Gram-negative outer membrane damage. Commun Biol 2023; 6:409. [PMID: 37055536 PMCID: PMC10102067 DOI: 10.1038/s42003-023-04745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Antimicrobial resistance is an urgent threat to human health, and new antibacterial drugs are desperately needed, as are research tools to aid in their discovery and development. Vancomycin is a glycopeptide antibiotic that is widely used for the treatment of Gram-positive infections, such as life-threatening systemic diseases caused by methicillin-resistant Staphylococcus aureus (MRSA). Here we demonstrate that modification of vancomycin by introduction of an azide substituent provides a versatile intermediate that can undergo copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction with various alkynes to readily prepare vancomycin fluorescent probes. We describe the facile synthesis of three probes that retain similar antibacterial profiles to the parent vancomycin antibiotic. We demonstrate the versatility of these probes for the detection and visualisation of Gram-positive bacteria by a range of methods, including plate reader quantification, flow cytometry analysis, high-resolution microscopy imaging, and single cell microfluidics analysis. In parallel, we demonstrate their utility in measuring outer-membrane permeabilisation of Gram-negative bacteria. The probes are useful tools that may facilitate detection of infections and development of new antibiotics.
Collapse
Affiliation(s)
- Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sanjaya Kc
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alysha G Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113, Sofia, Bulgaria
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Ghosh R, Jayakannan M. Theranostic FRET Gate to Visualize and Quantify Bacterial Membrane Breaching. Biomacromolecules 2023; 24:739-755. [PMID: 36598256 DOI: 10.1021/acs.biomac.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Designing new antimicrobial-cum-probes to study real-time bacterial membrane breaching and concurrently developing inquisitorial image-based analytical tools is essential for the treatment of infectious diseases. An array of aggregation-induced emission (AIE) polymers (donor) consisting of neutral, anionic, and cationic charges were designed and employed as antimicrobial theranostic gatekeepers for the permeabilization of the peptidoglycan layer-adherable crystal violet (CV, acceptor). An AIE-active tetraphenylethylene (TPE)-tagged polycaprolactone biodegradable platform was chosen, and their self-assembled tiny amphiphilic nanoparticles were employed as a gatekeeper in the construction of bacterial membrane-reinforced fluorescent resonance energy transfer (FRET) probes. Electrostatic adhering of the cationic AIE polymer and subsequent gate opening aided fluorescent FRET probe activation on the membrane of Gram-negative bacteria, Escherichia coli. The selective photoexcitation energy transfer process in confocal microscopy experiments facilitated the building of a visualization-based FRET assay for the quantification of bactericidal activity. Nonantimicrobial AIE polymers (neutral and anionic) did not breach the bacterial membrane, resulting in no FRET signal. Detailed photophysical studies were done to establish the FRET probe mechanism, and a proof of concept was established.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
8
|
Kanstrup C, Jimidar CC, Tomas J, Cutolo G, Crocoll C, Schuler M, Klahn P, Tatibouët A, Nour-Eldin HH. Artificial Fluorescent Glucosinolates (F-GSLs) Are Transported by the Glucosinolate Transporters GTR1/2/3. Int J Mol Sci 2023; 24:ijms24020920. [PMID: 36674437 PMCID: PMC9862856 DOI: 10.3390/ijms24020920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The glucosinolate transporters 1/2/3 (GTR1/2/3) from the Nitrate and Peptide transporter Family (NPF) play an essential role in the transport, accumulation, and distribution of the specialized plant metabolite glucosinolates. Due to representing both antinutritional and health-promoting compounds, there is increasing interest in characterizing GTRs from various plant species. We generated seven artificial glucosinolates (either aliphatic or benzenic) bearing different fluorophores (Fluorescein, BODIPY, Rhodamine, Dansylamide, and NBD) and investigated the ability of GTR1/2/3 from Arabidopsis thaliana to import the fluorescent glucosinolates (F-GSLs) into oocytes from Xenopus laevis. Five out of the seven F-GSLs synthesized were imported by at least one of the GTRs. GTR1 and GTR2 were able to import three F-GSLs actively above external concentration, while GTR3 imported only one actively. Competition assays indicate that the F-GSLs are transported by the same mechanism as non-tagged natural glucosinolates. The GTR-mediated F-GSL uptake is detected via a rapid and sensitive assay only requiring simple fluorescence measurements on a standard plate reader. This is highly useful in investigations of glucosinolate transport function and provides a critical prerequisite for elucidating the relationship between structure and function through high-throughput screening of GTR mutant libraries. The F-GSL themselves may also be suitable for future studies on glucosinolate transport in vivo.
Collapse
Affiliation(s)
- Christa Kanstrup
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Claire C. Jimidar
- Institute of Organic Chemistry, Technische Universität Carolo Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Josip Tomas
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Giuliano Cutolo
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Marie Schuler
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Carolo Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
- Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96 Göteborg, Sweden
| | - Arnaud Tatibouët
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Correspondence:
| |
Collapse
|
9
|
Wongso H, Hendra R, Nugraha AS, Ritawidya R, Saptiama I, Kusumaningrum CE. Microbial metabolites diversity and their potential as molecular template for the discovery of new fluorescent and radiopharmaceutical probes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Lee IK, Jacome DA, Cho JK, Tu V, Young AJ, Dominguez T, Northrup JD, Etersque JM, Lee HS, Ruff A, Aklilu O, Bittinger K, Glaser LJ, Dorgan D, Hadjiliadis D, Kohli RM, Mach RH, Mankoff DA, Doot RK, Sellmyer MA. Imaging sensitive and drug-resistant bacterial infection with [11C]-trimethoprim. J Clin Invest 2022; 132:156679. [PMID: 36106638 PMCID: PMC9479701 DOI: 10.1172/jci156679] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/19/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Several molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test. METHODS Using a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool. RESULTS We observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be “imageable.” Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions. CONCLUSION This work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT03424525. FUNDING Institute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).
Collapse
Affiliation(s)
- Iris K. Lee
- Department of Radiology and
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Vincent Tu
- Department of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Jean M. Etersque
- Department of Radiology and
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Kyle Bittinger
- Department of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laurel J. Glaser
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Dorgan
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, and
| | - Denis Hadjiliadis
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, and
| | - Rahul M. Kohli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Division of Infectious Disease, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Mark A. Sellmyer
- Department of Radiology and
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Fanti RC, Vasconcelos SNS, Catta-Preta CMC, Sullivan JR, Riboldi GP, Dos Reis CV, Ramos PZ, Edwards AM, Behr MA, Couñago RM. A Target Engagement Assay to Assess Uptake, Potency, and Retention of Antibiotics in Living Bacteria. ACS Infect Dis 2022; 8:1449-1467. [PMID: 35815896 DOI: 10.1021/acsinfecdis.2c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetic binding parameters of antibiotics targeting dihydrofolate reductase (DHFR) in live bacteria. We also used this assay to identify novel DHFR ligands having antimicrobial activity. We validated this approach using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of target engagement assays in bacteria to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.
Collapse
Affiliation(s)
- Rebeka C Fanti
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Carolina M C Catta-Preta
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Jaryd R Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada
| | - Gustavo P Riboldi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Aled M Edwards
- Structural Genomics Consortium, 101 College Street, Toronto M5G 1L7, Canada
| | - Marcel A Behr
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montréal H4A 3J1, Canada
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| |
Collapse
|
12
|
Łapińska U, Voliotis M, Lee KK, Campey A, Stone MRL, Tuck B, Phetsang W, Zhang B, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 2022; 11:e74062. [PMID: 35670099 PMCID: PMC9173744 DOI: 10.7554/elife.74062] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.
Collapse
Affiliation(s)
- Urszula Łapińska
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Margaritis Voliotis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
| | - Ka Kiu Lee
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Adrian Campey
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New JerseyPiscatawayUnited States
| | - Brandon Tuck
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of ExeterExeterUnited Kingdom
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria
| | - Mark AT Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Stefano Pagliara
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
13
|
Application of antibiotic-derived fluorescent probes to bacterial studies. Methods Enzymol 2022; 665:1-28. [DOI: 10.1016/bs.mie.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Wang D, Li H, Ma X, Tang Y, Tang H, Huang D, Lin M, Liu Z. Hfq Regulates Efflux Pump Expression and Purine Metabolic Pathway to Increase Trimethoprim Resistance in Aeromonas veronii. Front Microbiol 2021; 12:742114. [PMID: 34899630 PMCID: PMC8652118 DOI: 10.3389/fmicb.2021.742114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Aeromonas veronii (A. veronii) is a zoonotic pathogen. It causes clinically a variety of diseases such as dysentery, bacteremia, and meningitis, and brings huge losses to aquaculture. A. veronii has been documented as a multiple antibiotic resistant bacterium. Hfq (host factor for RNA bacteriophage Qβ replication) participates in the regulations of the virulence, adhesion, and nitrogen fixation, effecting on the growth, metabolism synthesis and stress resistance in bacteria. The deletion of hfq gene in A. veronii showed more sensitivity to trimethoprim, accompanying by the upregulations of purine metabolic genes and downregulations of efflux pump genes by transcriptomic data analysis. Coherently, the complementation of efflux pump-related genes acrA and acrB recovered the trimethoprim resistance in Δhfq. Besides, the accumulations of adenosine and guanosine were increased in Δhfq in metabonomic data. The strain Δhfq conferred more sensitive to trimethoprim after appending 1 mM guanosine to M9 medium, while wild type was not altered. These results demonstrated that Hfq mediated trimethoprim resistance by elevating efflux pump expression and degrading adenosine, and guanosine metabolites. Collectively, Hfq is a potential target to tackle trimethoprim resistance in A. veronii infection.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Sciences, Hainan University, Haikou, China.,College of Tropical Crops Hainan University, Haikou, China
| | - Hong Li
- College of Life Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- College of Life Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- College of Life Sciences, Hainan University, Haikou, China
| | - Hongqian Tang
- College of Life Sciences, Hainan University, Haikou, China
| | - Dongyi Huang
- College of Tropical Crops Hainan University, Haikou, China
| | - Min Lin
- Chinese Academy of Agricultural Science, Beijing, China
| | - Zhu Liu
- College of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
15
|
Baibek A, Üçüncü M, Short B, Ramage G, Lilienkampf A, Bradley M. Dyeing fungi: amphotericin B based fluorescent probes for multiplexed imaging. Chem Commun (Camb) 2021; 57:1899-1902. [PMID: 33491716 DOI: 10.1039/d0cc08177a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The clinically used antifungal polyene amphotericin B was conjugated, via the mycosamine and the aglycon moieties, to fluorophores. The Cy5 conjugated probe showed selective labelling of fungi in the presence of bacteria, allowing multiplexed imaging and identification of microbial species in a co-culture of fungi and Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Assel Baibek
- EaStChem School of Chemistry, The University of Edinburgh, Edinburgh, UK.
| | - Muhammed Üçüncü
- EaStChem School of Chemistry, The University of Edinburgh, Edinburgh, UK. and Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Bryn Short
- The University of the West of Scotland, Institute of Healthcare, Policy and Practice, Paisley, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Mark Bradley
- EaStChem School of Chemistry, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
New Trimethoprim-Like Molecules: Bacteriological Evaluation and Insights into Their Action. Antibiotics (Basel) 2021; 10:antibiotics10060709. [PMID: 34204647 PMCID: PMC8231229 DOI: 10.3390/antibiotics10060709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
This work reports a detailed characterization of the antimicrobial profile of two trimethoprim-like molecules (compounds 1a and 1b) identified in previous studies. Both molecules displayed remarkable antimicrobial activity, particularly when combined with sulfamethoxazole. In disk diffusion assays on Petri dishes, compounds 1a and 1b showed synergistic effects with colistin. Specifically, in combinations with low concentrations of colistin, very large increases in the activities of compounds 1a and 1b were determined, as demonstrated by alterations in the kinetics of bacterial growth despite only slight changes in the fractional inhibitory concentration index. The effect of colistin may be to increase the rate of antibiotic entry while reducing efflux pump activity. Compounds 1a and 1b were susceptible to extrusion by efflux pumps, whereas the inhibitor phenylalanine arginyl β-naphthylamide (PAβN) exerted effects similar to those of colistin. The interactions between the target enzyme (dihydrofolate reductase), the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH), and the studied molecules were explored using enzymology tools and computational chemistry. A model based on docking results is reported.
Collapse
|
17
|
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics (Basel) 2021; 10:701. [PMID: 34208097 PMCID: PMC8230823 DOI: 10.3390/antibiotics10060701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans trapped in the periplasmic space, and the displacement of cell surface charges. The focus of our discussion is the impact of Donnan potential on the cellular permeability of selected antibiotics including fluoroquinolones, tetracyclines, β-lactams, and trimethoprim.
Collapse
Affiliation(s)
| | | | | | | | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (O.A.); (A.P.); (J.C.); (I.O.)
| |
Collapse
|
18
|
|
19
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
20
|
Liu W, Li R, Deng F, Yan C, Zhou X, Miao L, Li X, Xu Z. A Cell Membrane Fluorogenic Probe for Gram-Positive Bacteria Imaging and Real-Time Tracking of Bacterial Viability. ACS APPLIED BIO MATERIALS 2021; 4:2104-2112. [PMID: 35014338 DOI: 10.1021/acsabm.0c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infections are a global healthcare problem, resulting in serious clinical morbidities and mortality. Real-time monitoring of live bacteria by fluorescent imaging technology has potential in diagnosis of bacterial infections, elucidating antimicrobial agents' mode of action, assessing drug toxicity, and examining bacterial antimicrobial resistance. In this work, a naphthalimide-derived fluorescent probe ZTRS-BP was developed for wash-free Gram-positive bacteria imaging. The probe aggregated in aqueous solutions and exhibited aggregation-caused fluorescence quenching (ACQ). The interaction with Gram-positive bacteria cell walls would selectively disaggregate the probe and the liberated probes were dispersed on the outside of the bacteria cell walls to achieve surface fluorescence imaging. There were no such interactions with Gram-negative bacteria, which indicates that selective binding and imaging of Gram-positive bacteria was achieved. The binding of zinc ions by ZTRS-BP can enhance the fluorescent signals on the bacterial surface by inhibiting the process of photoinduced electron transfer. ZTRS-BP-Zn(II) complex was an excellent dye to discriminate mixed Gram-positive and Gram-negative bacteria. Also, live and dead bacteria can be differentially imaged by ZTRS-BP-Zn(II). Furthermore, ZTRS-BP-Zn(II) was used for real-time monitoring bacteria viability such as B. cereus treated with antibiotic vancomycin.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruihua Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Fei Deng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Chunyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Zhang Dayu Schoole of Chemistry, Dalian University of Technology, Dalian 116012, China
| | - Xuelian Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Zhang Dayu Schoole of Chemistry, Dalian University of Technology, Dalian 116012, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolian Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Zhaochao Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Zhang Dayu Schoole of Chemistry, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
21
|
Metier C, Dow J, Wootton H, Lynham S, Wren B, Wagner GK. Profiling of Haemophilus influenzae strain R2866 with carbohydrate-based covalent probes. Org Biomol Chem 2021; 19:476-485. [PMID: 33355321 DOI: 10.1039/d0ob01971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the application of four covalent probes based on anomerically pure d-galactosamine and d-glucosamine scaffolds for the profiling of Haemophilus influenzae strain R2866. The probes have been used successfully for the labelling of target proteins not only in cell lysates, but also in intact cells. Differences in the labelling patterns between lysates and intact cells indicate that the probes can penetrate into the periplasm, but not the cytoplasm of H. influenzae. Analysis of selected target proteins by LC-MS/MS suggests predominant labelling of nucleotide-binding proteins, including several known antibacterial drug targets. Our protocols will aid the identification of molecular determinants of bacterial pathogenicity in Haemophilus influenzae and other bacterial pathogens.
Collapse
Affiliation(s)
- Camille Metier
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Jennifer Dow
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Keppel Street, London, WC1E, 7HT, UK
| | - Hayley Wootton
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Keppel Street, London, WC1E, 7HT, UK
| | - Gerd K Wagner
- Queen's University Belfast, School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
22
|
Stone MRL, Łapińska U, Pagliara S, Masi M, Blanchfield JT, Cooper MA, Blaskovich MAT. Fluorescent macrolide probes - synthesis and use in evaluation of bacterial resistance. RSC Chem Biol 2020; 1:395-404. [PMID: 34458770 PMCID: PMC8341779 DOI: 10.1039/d0cb00118j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging crisis of antibiotic resistance requires a multi-pronged approach in order to avert the onset of a post-antibiotic age. Studies of antibiotic uptake and localisation in live cells may inform the design of improved drugs and help develop a better understanding of bacterial resistance and persistence. To facilitate this research, we have synthesised fluorescent derivatives of the macrolide antibiotic erythromycin. These analogues exhibit a similar spectrum of antibiotic activity to the parent drug and are capable of labelling both Gram-positive and -negative bacteria for microscopy. The probes localise intracellularly, with uptake in Gram-negative bacteria dependent on the level of efflux pump activity. A plate-based assay established to quantify bacterial labelling and localisation demonstrated that the probes were taken up by both susceptible and resistant bacteria. Significant intra-strain and -species differences were observed in these preliminary studies. In order to examine uptake in real-time, the probe was used in single-cell microfluidic microscopy, revealing previously unseen heterogeneity of uptake in populations of susceptible bacteria. These studies illustrate the potential of fluorescent macrolide probes to characterise and explore drug uptake and efflux in bacteria. Macrolide fluorescent probes illuminate the interactions between antibiotics and bacteria, providing new insight into mechanisms of resistance.![]()
Collapse
Affiliation(s)
- M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland 306 Carmody Road St Lucia 4072 Brisbane Australia
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter Exeter EX4 4QD UK
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter Exeter EX4 4QD UK
| | - Muriel Masi
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 911198 Gif-sur-Yvette France
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland 68 Cooper Road St Lucia 4072 Brisbane Australia
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland 306 Carmody Road St Lucia 4072 Brisbane Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland 306 Carmody Road St Lucia 4072 Brisbane Australia
| |
Collapse
|
23
|
Pandeya A, Alegun O, Cai Y, Wei Y. Distribution of fluoroquinolones in the two aqueous compartments of Escherichia coli. Biochem Biophys Rep 2020; 24:100849. [PMID: 33235925 PMCID: PMC7670238 DOI: 10.1016/j.bbrep.2020.100849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
The double-layered cell envelope of Gram-negative bacteria and active drug efflux present a formidable barrier for antimicrobial compounds to penetrate. Fluoroquinolones are among the few classes of antimicrobials that are clinically useful in the treatment of Gram-negative bacterial infection. Previous studies on fluoroquinolone accumulation measured total bacteria associated compounds, rather than the cytoplasmic accumulation. Fluoroquinolones target the type II topoisomerases in the cytoplasm. Thus, the cytoplasmic accumulation is expected to be more relevant to the potency of the drugs. Here, we fractionated and measured the concentration of nine fluoroquinolone compounds in the periplasm and the cytoplasm of two strains of E. coli cells, a parent strain and its isogenic efflux-deficient tolC knockout strain. The potency of the drugs was determined using the minimum inhibitory concentration (MIC) assay. We found that all fluoroquinolones tested accumulated at much higher concentrations in the periplasm than in the cytoplasm. The periplasmic concentrations were 2–15 folds higher than the cytoplasmic concentration, while the actual distribution ratio varies drastically among the compounds tested. Good correlation between the MIC and the cytoplasmic accumulation, but not whole cell accumulation, was observed using a pair of isogenic wild type and drug-efflux deficient strains. Fluoroquinolones accumulate to high concentration in the periplasm of E. coli Periplasmic concentrations are higher than the cytoplasmic and exterior media concentration. Good correlation was observed for the cytoplasmic drug concentration and the antimicrobial potency. Disruption of active efflux has a larger impact on the periplasmic than the cytoplasmic accumulation.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Olaniyi Alegun
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Yuguang Cai
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
24
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
25
|
Schäfer AB, Wenzel M. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Front Cell Infect Microbiol 2020; 10:540898. [PMID: 33194788 PMCID: PMC7604286 DOI: 10.3389/fcimb.2020.540898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to classical antibiotics in the fight against multi-resistant bacteria. They are produced by organisms from all domains of life and constitute a nearly universal defense mechanism against infectious agents. No drug can be approved without information about its mechanism of action. In order to use them in a clinical setting, it is pivotal to understand how AMPs work. While many pore-forming AMPs are well-characterized in model membrane systems, non-pore-forming peptides are often poorly understood. Moreover, there is evidence that pore formation may not happen or not play a role in vivo. It is therefore imperative to study how AMPs interact with their targets in vivo and consequently kill microorganisms. This has been difficult in the past, since established methods did not provide much mechanistic detail. Especially, methods to study membrane-active compounds have been scarce. Recent advances, in particular in microscopy technology and cell biological labeling techniques, now allow studying mechanisms of AMPs in unprecedented detail. This review gives an overview of available in vivo methods to investigate the antibacterial mechanisms of AMPs. In addition to classical mode of action classification assays, we discuss global profiling techniques, such as genomic and proteomic approaches, as well as bacterial cytological profiling and other cell biological assays. We cover approaches to determine the effects of AMPs on cell morphology, outer membrane, cell wall, and inner membrane properties, cellular macromolecules, and protein targets. We particularly expand on methods to examine cytoplasmic membrane parameters, such as composition, thickness, organization, fluidity, potential, and the functionality of membrane-associated processes. This review aims to provide a guide for researchers, who seek a broad overview of the available methodology to study the mechanisms of AMPs in living bacteria.
Collapse
Affiliation(s)
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Miao L, Liu W, Qiao Q, Li X, Xu Z. Fluorescent antibiotics for real-time tracking of pathogenic bacteria. J Pharm Anal 2020; 10:444-451. [PMID: 33133728 PMCID: PMC7591806 DOI: 10.1016/j.jpha.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
The harm of pathogenic bacteria to humans has promoted extensive research on physiological processes of pathogens, such as the mechanism of bacterial infection, antibiotic mode of action, and bacterial antimicrobial resistance. Most of these processes can be better investigated by timely tracking of fluorophore-derived antibiotics in living cells. In this paper, we will review the recent development of fluorescent antibiotics featuring the conjugation with various fluorophores, and focus on their applications in fluorescent imaging and real-time detection for various physiological processes of bacteria in vivo. Profiles of Fluorophores-derived Antibiotics in Development. Discussing the influence on antibiotic activity after conjugating fluorophore. Fluorescent Tracking to better understand physiological processes of Pathogenic bacteria. Live-Cell imaging to investigate bacteria in their native environment.
Collapse
Affiliation(s)
- Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weiwei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaolian Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
27
|
Cama J, Voliotis M, Metz J, Smith A, Iannucci J, Keyser UF, Tsaneva-Atanasova K, Pagliara S. Single-cell microfluidics facilitates the rapid quantification of antibiotic accumulation in Gram-negative bacteria. LAB ON A CHIP 2020; 20:2765-2775. [PMID: 32613221 PMCID: PMC7953842 DOI: 10.1039/d0lc00242a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 06/01/2023]
Abstract
The double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for drug development, but this has proved elusive due to a dearth of suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence microscopy to rapidly quantify antibiotic accumulation in hundreds of individual Escherichia coli cells. By serially manipulating the microfluidic environment, we demonstrated that stationary phase Escherichia coli, traditionally more refractory to antibiotics than growing cells, display reduced accumulation of the antibiotic ofloxacin compared to actively growing cells. Our novel microfluidic method facilitates the quantitative comparison of the role of the microenvironment versus that of the absence of key membrane transport pathways in cellular drug accumulation. Unlike traditional techniques, our assay is rapid, studying accumulation as the cells are dosed with the drug. This platform provides a powerful new tool for studying antibiotic accumulation in bacteria, which will be critical for the rational development of the next generation of antibiotics.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- College of Engineering
, Mathematics and Physical Sciences
, University of Exeter
,
Exeter EX4 4QF
, UK
- Cavendish Laboratory
, Department of Physics
, University of Cambridge
,
JJ Thomson Avenue
, Cambridge CB3 0HE
, UK
| | - Margaritis Voliotis
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- College of Engineering
, Mathematics and Physical Sciences
, University of Exeter
,
Exeter EX4 4QF
, UK
| | - Jeremy Metz
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| | - Ashley Smith
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| | - Jari Iannucci
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| | - Ulrich F. Keyser
- Cavendish Laboratory
, Department of Physics
, University of Cambridge
,
JJ Thomson Avenue
, Cambridge CB3 0HE
, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- College of Engineering
, Mathematics and Physical Sciences
, University of Exeter
,
Exeter EX4 4QF
, UK
| | - Stefano Pagliara
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| |
Collapse
|
28
|
McDowell LL, Quinn CL, Leeds JA, Silverman JA, Silver LL. Perspective on Antibacterial Lead Identification Challenges and the Role of Hypothesis-Driven Strategies. SLAS DISCOVERY 2020; 24:440-456. [PMID: 30890054 DOI: 10.1177/2472555218818786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the past three decades, the pharmaceutical industry has undertaken many diverse approaches to discover novel antibiotics, with limited success. We have witnessed and personally experienced many mistakes, hurdles, and dead ends that have derailed projects and discouraged scientists and business leaders. Of the many factors that affect the outcomes of screening campaigns, a lack of understanding of the properties that drive efflux and permeability requirements across species has been a major barrier for advancing hits to leads. Hits that possess bacterial spectrum have seldom also possessed druglike properties required for developability and safety. Persistence in solving these two key barriers is necessary for the reinvestment into discovering antibacterial agents. This perspective narrates our experience in antibacterial discovery-our lessons learned about antibacterial challenges as well as best practices for screening strategies. One of the tenets that guides us is that drug discovery is a hypothesis-driven science. Application of this principle, at all steps in the antibacterial discovery process, should improve decision making and possibly the odds of what has become, in recent decades, an increasingly challenging endeavor with dwindling success rates.
Collapse
Affiliation(s)
- Laura L McDowell
- 1 Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | | | - Jennifer A Leeds
- 1 Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | | | | |
Collapse
|
29
|
Peng H, Chau VQ, Phetsang W, Sebastian RM, Stone MRL, Datta S, Renwick M, Tamer YT, Toprak E, Koh AY, Blaskovich MA, Hulleman JD. Non-antibiotic Small-Molecule Regulation of DHFR-Based Destabilizing Domains In Vivo. Mol Ther Methods Clin Dev 2019; 15:27-39. [PMID: 31649953 PMCID: PMC6804886 DOI: 10.1016/j.omtm.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The E. coli dihydrofolate reductase (DHFR) destabilizing domain (DD), which shows promise as a biologic tool and potential gene therapy approach, can be utilized to achieve spatial and temporal control of protein abundance in vivo simply by administration of its stabilizing ligand, the routinely prescribed antibiotic trimethoprim (TMP). However, chronic TMP use drives development of antibiotic resistance (increasing likelihood of subsequent infections) and disrupts the gut microbiota (linked to autoimmune and neurodegenerative diseases), tempering translational excitement of this approach in model systems and for treating human diseases. Herein, we identified a TMP-based, non-antibiotic small molecule, termed 14a (MCC8529), and tested its ability to control multiple DHFR-based reporters and signaling proteins. We found that 14a is non-toxic and can effectively stabilize DHFR DDs expressed in mammalian cells. Furthermore, 14a crosses the blood-retinal barrier and stabilizes DHFR DDs expressed in the mouse eye with kinetics comparable to that of TMP (≤6 h). Surprisingly, 14a stabilized a DHFR DD in the liver significantly better than TMP did, while having no effect on the mouse gut microbiota. Our results suggest that alternative small-molecule DHFR DD stabilizers (such as 14a) may be ideal substitutes for TMP in instances when conditional, non-antibiotic control of protein abundance is desired in the eye and beyond.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Viet Q. Chau
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Rebecca M. Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - M. Rhia L. Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Shyamtanu Datta
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yusuf T. Tamer
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Erdal Toprak
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Mark A.T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - John D. Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
30
|
Breaching the Barrier: Quantifying Antibiotic Permeability across Gram-negative Bacterial Membranes. J Mol Biol 2019; 431:3531-3546. [DOI: 10.1016/j.jmb.2019.03.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
|
31
|
Fedorowicz J, Sączewski J, Konopacka A, Waleron K, Lejnowski D, Ciura K, Tomašič T, Skok Ž, Savijoki K, Morawska M, Gilbert-Girard S, Fallarero A. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur J Med Chem 2019; 179:576-590. [PMID: 31279292 DOI: 10.1016/j.ejmech.2019.06.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/18/2022]
Abstract
A series of novel fluoroquinolone-Safirinium dye hybrids was synthesized by means of tandem Mannich-electrophilic amination reactions from profluorophoric isoxazolones and antibiotics bearing a secondary amino group at position 7 of the quinoline ring. The obtained fluorescent spiro fused conjugates incorporating quaternary nitrogen atoms were characterized by 1H NMR, IR, MS, and elemental analysis. All the synthetic analogues (3a-h and 4a-h) were evaluated for their in vitro antimicrobial, bactericidal, and antibiofilm activities against a panel of Gram positive and Gram-negative pathogenic bacteria. The most active Safirinium Q derivatives of lomefloxacin (4d) and ciprofloxacin (4e) exhibited molar-based antibacterial activities comparable to the unmodified drugs and displayed considerable inhibitory potencies in E. coli DNA gyrase supercoiling assays with IC50 values in the low micromolar range. Zwiterionic hybrids were noticeably less lipophilic than the parent quinolones in micellar electrokinetic chromatography (MECK) experiments. The tests performed in the presence of phenylalanine-arginine β-naphthylamide (PAβN) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) revealed that the conjugates are to some extent subject to bacterial efflux and cellular accumulation, respectively. Moreover, the hybrids did not exhibit notable cytotoxicity towards the HEK 293 control cell line and demonstrated low propensity for resistance development, as exemplified for compounds 3g and 4b. Finally, molecular docking experiments revealed that the synthesized compounds were able to bind in the fluoroquinolone-binding mode at S. aureus DNA gyrase and S. pneumoniae topoisomerase IV active sites.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Dawid Lejnowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Kirsi Savijoki
- Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100, Helsinki, Finland
| | - Małgorzata Morawska
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland; Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland; Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100, Helsinki, Finland
| | - Shella Gilbert-Girard
- Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100, Helsinki, Finland
| | - Adyary Fallarero
- Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100, Helsinki, Finland
| |
Collapse
|
32
|
Stone MRL, Masi M, Phetsang W, Pagès JM, Cooper MA, Blaskovich MAT. Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux. MEDCHEMCOMM 2019; 10:901-906. [PMID: 31303987 PMCID: PMC6596217 DOI: 10.1039/c9md00124g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
Fluorescent probes derived from the fluoroquinolone antibiotic ciprofloxacin were synthesised using a Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) to link a ciprofloxacin azide derivative with alkyne-substituted green and blue fluorophores.
Fluorescent probes derived from the fluoroquinolone antibiotic ciprofloxacin were synthesised using a Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) to link a ciprofloxacin azide derivative with alkyne-substituted green and blue fluorophores. The azide (2) and fluorophore (3 and 4) derivatives retained antimicrobial activity against Gram-positive and Gram-negative bacteria. The use of confocal fluorescent microscopy showed intracellular penetration, which was substantially enhanced in the presence of carbonyl cyanide 3-chlorophenylhydrazone as an efflux pump inhibitor in Escherichia coli.
Collapse
Affiliation(s)
- M Rhia L Stone
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Muriel Masi
- Membranes et Cibles Thérapeutiques , UMR_MD1 , Inserm U1261 , Aix-Marseille Univ & IRBA , Facultés de Médecine et de Pharmacie , 27 Bd Jean Moulin , 13005 Marseille , France
| | - Wanida Phetsang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Jean-Marie Pagès
- Membranes et Cibles Thérapeutiques , UMR_MD1 , Inserm U1261 , Aix-Marseille Univ & IRBA , Facultés de Médecine et de Pharmacie , 27 Bd Jean Moulin , 13005 Marseille , France
| | - Matthew A Cooper
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| |
Collapse
|
33
|
Hanson RN, Gajadeera N. Design and synthesis of fluorescently labeled steroidal antiestrogens. Steroids 2019; 145:39-46. [PMID: 30797876 DOI: 10.1016/j.steroids.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
A set of derivatives of 11β-(4-oxyphenyl)estradiol were prepared as potential fluorescent imaging agents for the evaluation of the estrogen receptor. The compounds were designed based on the established affinity and selectivity of 11β-[4-(dimethylethoxy)phenyl]estradiol (RU39411) as an estrogen receptor (ER) antagonist. The 5-(dimethylamino) naphathalene-1-sulfonyl (dansyl) and 7-nitrobenzo[c][1,2,5] oxadiaol-4-yl (NBD) moieties were selected based on their fluorescent and physicochemical properties. A convergent synthesis was developed that culminated in the [3 + 2] copper (I) assisted alkyne-azide cycloaddition coupling of the steroidal and fluorescent components. Good yields were obtained for the intermediates and final products, and the structural variations in the steroid component will permit evaluation of ER affinity and selectivity.
Collapse
Affiliation(s)
- Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| | - Nisal Gajadeera
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
34
|
Yin P, Wang T, Yang Y, Yin W, Zhang S, Yang Z, Qi C, Ma H. Positive charge-dependent cell targeted staining and DNA detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj03993g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorescence probes containing pyridinium compounds and different negative ions with the applications of specific tracing of different cell organelles and DNA detection!
Collapse
Affiliation(s)
- Pei Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Tao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yuan Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Weidong Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Shaoxiong Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Zengming Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Chunxuan Qi
- Baoji AIE Research Center
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- China
| | - Hengchang Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
35
|
Prochnow H, Fetz V, Hotop SK, García-Rivera MA, Heumann A, Brönstrup M. Subcellular Quantification of Uptake in Gram-Negative Bacteria. Anal Chem 2018; 91:1863-1872. [PMID: 30485749 DOI: 10.1021/acs.analchem.8b03586] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infections by Gram-negative pathogens represent a major health care issue of growing concern due to a striking lack of novel antibacterial agents over the course of the last decades. The main scientific problem behind the rational optimization of novel antibiotics is our limited understanding of small molecule translocation into, and their export from, the target compartments of Gram-negative species. To address this issue, a versatile, label-free assay to determine the intracellular localization and concentration of a given compound has been developed for Escherichia coli and its efflux-impaired ΔTolC mutant. The assay applies a fractionation procedure to antibiotic-treated bacterial cells to obtain periplasm, cytoplasm, and membrane fractions of high purity, as demonstrated by Western Blots of compartment-specific marker proteins. This is followed by an LC-MS/MS-based quantification of antibiotic content in each compartment. Antibiotic amounts could be converted to antibiotic concentrations by assuming that an E. coli cell is a cylinder flanked by two half spheres and calculating the volumes of bacterial compartments. The quantification of antibiotics from different classes, namely ciprofloxacin, tetracycline, trimethoprim, and erythromycin, demonstrated pronounced differences in uptake quantities and distribution patterns across the compartments. For example, in the case of ciprofloxacin, a higher amount of compound was located in the cytoplasm than in the periplasm (592 ± 50 pg vs 277 ± 13 pg per 3.9 × 109 cells), but owing to the smaller volume of the periplasmic compartment, its concentration in the cytoplasm was much lower (37 ± 3 vs 221 ± 10 pg/μL for the periplasm). For erythromycin and tetracycline, differences in MICs between WT and ΔTolC mutant strains were not reflected by equal differences in uptake, illustrating that additional experimental data are needed to predict antibiotic efficacy. We believe that our assay, providing the antibiotic concentration at the compartment in which the drug target is expressed, constitutes an essential piece of information for a more rational optimization of novel antibiotics against Gram-negative infections.
Collapse
Affiliation(s)
- Hans Prochnow
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Verena Fetz
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 Braunschweig , Germany.,School of Engineering and Science , Jacobs University Bremen , 28759 Bremen , Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Mariel A García-Rivera
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Axel Heumann
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 Braunschweig , Germany.,German Center for Infection Research (DZIF) , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| |
Collapse
|
36
|
Spangler B, Dovala D, Sawyer WS, Thompson KV, Six DA, Reck F, Feng BY. Molecular Probes for the Determination of Subcellular Compound Exposure Profiles in Gram-Negative Bacteria. ACS Infect Dis 2018; 4:1355-1367. [PMID: 29846057 DOI: 10.1021/acsinfecdis.8b00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Gram-negative cell envelope presents a formidable barrier to xenobiotics, and achieving sufficient compound exposure inside the cell is a key challenge for the discovery of new antibiotics. To provide insight on the molecular determinants governing compound exposure in Gram-negative bacteria, we developed a methodology leveraging a cyclooctyne-based bioorthogonal probe to assess compartment-specific compound exposure. This probe can be selectively localized to the periplasmic or cytoplasmic compartments of Gram-negative bacteria. Once localized, the probe is used to test azide-containing compounds for exposure within each compartment by quantifying the formation of click-reaction products by mass spectrometry. We demonstrate this approach is an accurate and sensitive method of determining compartment-specific compound exposure profiles. We then apply this technology to study the compartment-specific exposure profiles of a small panel of azide-bearing compounds with known permeability characteristics in Gram-negative bacteria, demonstrating the utility of the system and the insight it is able to provide regarding compound exposure within intact bacteria.
Collapse
Affiliation(s)
- Benjamin Spangler
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dustin Dovala
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - William S. Sawyer
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Katherine V. Thompson
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - David A. Six
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Folkert Reck
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Brian Y. Feng
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
37
|
Advances and challenges in bacterial compound accumulation assays for drug discovery. Curr Opin Chem Biol 2018; 44:9-15. [PMID: 29803973 DOI: 10.1016/j.cbpa.2018.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
Abstract
The identification of potent in vitro inhibitors of essential bacterial targets is relatively straightforward, however vanishingly few of these molecules have Gram-negative antibacterial potency and spectrum because of a failure to accumulate inside the bacteria. The Gram-negative bacterial cell envelope provides a formidable barrier to entry and couples with efflux pumps to prevent compound accumulation. Assays to measure the cellular permeation, efflux and accumulation of compounds in bacteria continue to be innovated and refined to guide drug discovery. Important advances in the label-free detection of compounds associated with or passing through bacteria rely on mass spectrometry This technique holds the promise of bacterial subcellular resolution and the throughput needed to test libraries of compounds to evaluate structure-accumulation relationships.
Collapse
|
38
|
Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat Protoc 2018; 13:1348-1361. [DOI: 10.1038/nprot.2018.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Paparella AS, Feng J, Blanco-Rodriguez B, Feng Z, Phetsang W, Blaskovich MA, Cooper MA, Booker GW, Polyak SW, Abell AD. A template guided approach to generating cell permeable inhibitors of Staphylococcus aureus biotin protein ligase. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance. Trends Biotechnol 2018; 36:523-536. [PMID: 29478675 DOI: 10.1016/j.tibtech.2018.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
Better understanding how multidrug-resistant (MDR) bacteria can evade current and novel antibiotics requires a better understanding of the chemical biology of antibiotic action. This necessitates using new tools and techniques to advance our knowledge of bacterial responses to antibiotics, ideally in live cells in real time, to selectively investigate bacterial growth, division, metabolism, and resistance in response to antibiotic challenge. In this review, we discuss the preparation and biological evaluation of fluorescent antibiotics, focussing on how these reporters and assay methods can help elucidate resistance mechanisms. We also examine the potential utility of such probes for real-time in vivo diagnosis of infections.
Collapse
|
41
|
Fluoroquinolone structure and translocation flux across bacterial membrane. Sci Rep 2017; 7:9821. [PMID: 28851902 PMCID: PMC5575017 DOI: 10.1038/s41598-017-08775-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
Bacterial multidrug resistance is a worrying health issue. In Gram-negative antibacterial research, the challenge is to define the antibiotic permeation across the membranes. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is a pivotal step for antibacterial molecules. A spectrofluorimetric methodology has been developed to detect fluoroquinolones in bacterial population and inside individual Gram-negative bacterial cells. In this work, we studied the antibiotic accumulation in cells expressing various levels of efflux pumps. The assays allow us to determine the intracellular concentration of the fluoroquinolones to study the relationships between the level of efflux activity and the antibiotic accumulation, and finally to evaluate the impact of fluoroquinolone structures in this process. This represents the first protocol to identify some structural parameters involved in antibiotic translocation and accumulation, and to illustrate the recently proposed “Structure Intracellular Concentration Activity Relationship” (SICAR) concept.
Collapse
|
42
|
Schwaid AG, Cornella-Taracido I. Causes and Significance of Increased Compound Potency in Cellular or Physiological Contexts. J Med Chem 2017; 61:1767-1773. [DOI: 10.1021/acs.jmedchem.7b00762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Adam G. Schwaid
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|