1
|
Kumar GS, Sahoo AK, Ranjan N, Dwivedi VD, Agrawal S. Suppressing Mycobacterium tuberculosis virulence and drug resistance by targeting Eis protein through computational drug discovery. Mol Divers 2025; 29:1697-1723. [PMID: 39096353 DOI: 10.1007/s11030-024-10946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Tuberculosis (TB) remains a critical health threat, particularly with the emergence of multidrug-resistant strains. This demands attention from scientific communities and healthcare professionals worldwide to develop effective treatments. The enhanced intracellular survival (Eis) protein is an acetyltransferase enzyme of Mycobacterium tuberculosis that functions by adding acetyl groups to aminoglycoside antibiotics, which interferes with their ability to bind to the bacterial ribosome, thereby preventing them from inhibiting protein synthesis and killing the bacterium. Therefore, targeting this protein accelerates the chance of restoring the aminoglycoside drug activity, thereby reducing the emergence of drug-resistant TB. For this, we have screened 406,747 natural compounds from the Coconut database against Eis protein. Based on MM/GBSA rescoring binding energy, the top 5 most prominent natural compounds, viz. CNP0187003 (- 96.14 kcal/mol), CNP0176690 (- 93.79 kcal/mol), CNP0136537 (- 92.31 kcal/mol), CNP0398701 (- 91.96 kcal/mol), and CNP0043390 (- 91.60 kcal/mol) were selected. These compounds exhibited the presence of a substantial number of hydrogen bonds and other significant interactions confirming their strong binding affinity with the Eis protein during the docking process. Subsequently, the MD simulation of these compounds exhibited that the Eis-CNP0043390 complex was the most stable, followed by Eis-CNP0187003 and Eis-CNP0176690 complex, further verified by binding free energy calculation, principal component analysis (PCA), and Free energy landscape analysis. These compounds demonstrated the most favourable results in all parameters utilised for this investigation and may have the potential to inhibit the Eis protein. There these findings will leverage computational techniques to identify and develop a natural compound inhibitor as an alternative for drug-resistant TB.
Collapse
Affiliation(s)
- Geethu S Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Nishant Ranjan
- University Centre for Research and Development, Department of Mechanical Engineering, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Sharad Agrawal
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
2
|
Barghi Lish A, Foroumadi A, Kolvari E, Safari F. Synthesis and Biological Evaluation of 12-Aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3- d]pyridazine-8(9 H)-one Derivatives as Potential Cytotoxic Agents. ACS OMEGA 2023; 8:42212-42224. [PMID: 38024677 PMCID: PMC10653054 DOI: 10.1021/acsomega.3c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 μM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.
Collapse
Affiliation(s)
- Azam Barghi Lish
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran1417614411, Iran
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Eskandar Kolvari
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Fatemeh Safari
- Department
of Biology, Faculty of Science, University
of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
3
|
Magaña AJ, Sklenicka J, Pinilla C, Giulianotti M, Chapagain P, Santos R, Ramirez MS, Tolmasky ME. Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation. RSC Med Chem 2023; 14:1591-1602. [PMID: 37731693 PMCID: PMC10507813 DOI: 10.1039/d3md00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.
Collapse
Affiliation(s)
- Angel J Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Marc Giulianotti
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami FL 33199 USA
- Biomolecular Sciences Institute, Florida International University Miami FL 33199 USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University Fort Lauderdale FL 33314 USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| |
Collapse
|
4
|
Pang AH, Green KD, Tsodikov OV, Garneau-Tsodikova S. Discovery and development of inhibitors of acetyltransferase Eis to combat Mycobacterium tuberculosis. Methods Enzymol 2023; 690:369-396. [PMID: 37858535 PMCID: PMC10949404 DOI: 10.1016/bs.mie.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Aminoglycosides are bactericidal antibiotics with a broad spectrum of activity, used to treat infections caused mostly by Gram-negative pathogens and as a second-line therapy against tuberculosis. A common resistance mechanism to aminoglycosides is bacterial aminoglycoside acetyltransferase enzymes (AACs), which render aminoglycosides inactive by acetylating their amino groups. In Mycobacterium tuberculosis, an AAC called Eis (enhanced intracellular survival) acetylates kanamycin and amikacin. When upregulated as a result of mutations, Eis causes clinically important aminoglycoside resistance; therefore, Eis inhibitors are attractive as potential aminoglycoside adjuvants for treatment of aminoglycoside-resistant tuberculosis. For over a decade, we have studied Eis and discovered several series of Eis inhibitors. Here, we provide a detailed protocol for a colorimetric assay used for high-throughput discovery of Eis inhibitors, their characterization, and testing their selectivity. We describe protocols for in vitro cell culture assays for testing aminoglycoside adjuvant properties of the inhibitors. A procedure for obtaining crystals of Eis-inhibitor complexes and determining their structures is also presented. Finally, we discuss applicability of these methods to discovery and testing of inhibitors of other AACs.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
5
|
Huang Y, Zhu C, Pan L, Zhang Z. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol 2023; 13:1218583. [PMID: 37560320 PMCID: PMC10407107 DOI: 10.3389/fcimb.2023.1218583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.
Collapse
Affiliation(s)
| | | | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Pang AH, Green KD, Punetha A, Chandrika NT, Howard KC, Garneau-Tsodikova S, Tsodikov OV. Discovery and Mechanistic Analysis of Structurally Diverse Inhibitors of Acetyltransferase Eis among FDA-Approved Drugs. Biochemistry 2023; 62:710-721. [PMID: 36657084 PMCID: PMC9905294 DOI: 10.1021/acs.biochem.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.
Collapse
Affiliation(s)
| | | | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Kaitlind C. Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
7
|
1-Methylimidazole as an Organic Catalyst for [3+3]-Cyclodimerization of Acylethynylpyrroles to Bis(acylmethylidene)dipyrrolo[1,2-a:1′,2′-d]pyrazines. Catalysts 2022. [DOI: 10.3390/catal12121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acylethynylpyrroles, now readily available by the cross-coupling of pyrroles with acylbromoacetylenes in solid Al2O3 media, in the presence of 1-methylimidazole underwent unprecedentedly easy (40–45 °C) cyclodimerization into bis(acylmethylidene)dipyrrolo[1,2-a:1′,2′-d]pyrazines in up to 51% yield. Some other organic and inorganic basic catalysts can also trigger this cyclodimerization, but less efficiently.
Collapse
|
8
|
Pang AH, Green KD, Chandrika NT, Garzan A, Punetha A, Holbrook SYL, Willby MJ, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Discovery of substituted benzyloxy-benzylamine inhibitors of acetyltransferase Eis and their anti-mycobacterial activity. Eur J Med Chem 2022; 242:114698. [PMID: 36037791 PMCID: PMC9481687 DOI: 10.1016/j.ejmech.2022.114698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
A clinically significant mechanism of tuberculosis resistance to the aminoglycoside kanamycin (KAN) is its acetylation catalyzed by upregulated Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. In search for inhibitors of Eis, we discovered an inhibitor with a substituted benzyloxy-benzylamine scaffold. A structure-activity relationship study of 38 compounds in this structural family yielded highly potent (IC50 ∼ 1 μM) Eis inhibitors, which did not inhibit other acetyltransferases. Crystal structures of Eis in complexes with three of the inhibitors showed that the inhibitors were bound in the aminoglycoside binding site of Eis, consistent with the competitive mode of inhibition, as established by kinetics measurements. When tested in Mtb cultures, two inhibitors (47 and 55) completely abolished resistance to KAN of the highly KAN-resistant strain Mtb mc2 6230 K204, likely due to Eis inhibition as a major mechanism. Thirteen of the compounds were toxic even in the absence of KAN to Mtb and other mycobacteria, but not to non-mycobacteria or to mammalian cells. This, yet unidentified mechanism of toxicity, distinct from Eis inhibition, will merit future studies along with further development of these molecules as anti-mycobacterial agents.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Selina Y L Holbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Melisa J Willby
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James E Posey
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
9
|
Tambat N, Mulani SK, Ahmad A, Shaikh SB, Ahmed K. Pyrazine Derivatives—Versatile Scaffold. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Dhara HN, Rakshit A, Alam T, Patel BK. Metal-catalyzed reactions of organic nitriles and boronic acids to access diverse functionality. Org Biomol Chem 2022; 20:4243-4277. [PMID: 35552581 DOI: 10.1039/d2ob00288d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nitrile or cyano (-CN) group is one of the most appreciated and effective functional groups in organic synthesis, having a polar unsaturated C-N triple bond. Despite sufficient stability and being intrinsically inert, the nitrile group can be easily transformed into many other functional groups, such as amines, carboxylic acids, ketones, etc. which makes it a vital group in organic synthesis. On the other hand, despite several boronic acids having a low level of genotoxicity, they have found wide applicability in the field of organic synthesis, especially in transition metal-catalyzed cross-coupling reactions. Recently, transition-metal-catalyzed cascade additions or addition/cyclization processes of boronic acids to the nitrile group open up exciting and useful strategies to prepare a variety of functional molecules through the formation of C-C, C-N and CO bonds. Boronic acids can be added to the cyano functionality through catalytic carbometallation or through a radical cascade process to provide newer pathways for the rapid construction of various important acyclic ketones or amides, carbamidines, carbocycles and N,O-heterocycles. The present review focuses on various transition-metal-catalyzed additions of boronic acids via carbometallation or radical cascade processes using the cyano group as an acceptor.
Collapse
Affiliation(s)
- Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
11
|
Punetha A, Green KD, Garzan A, Thamban Chandrika N, Willby MJ, Pang AH, Hou C, Holbrook SYL, Krieger K, Posey JE, Parish T, Tsodikov OV, Garneau-Tsodikova S. Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis to overcome kanamycin resistance. RSC Med Chem 2021; 12:1894-1909. [PMID: 34825186 DOI: 10.1039/d1md00239b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a deadly bacterial disease. Drug-resistant strains of Mtb make eradication of TB a daunting task. Overexpression of the enhanced intracellular survival (Eis) protein by Mtb confers resistance to the second-line antibiotic kanamycin (KAN). Eis is an acetyltransferase that acetylates KAN, inactivating its antimicrobial function. Development of Eis inhibitors as KAN adjuvant therapeutics is an attractive path to forestall and overcome KAN resistance. We discovered that an antipsychotic drug, haloperidol (HPD, 1), was a potent Eis inhibitor with IC50 = 0.39 ± 0.08 μM. We determined the crystal structure of the Eis-haloperidol (1) complex, which guided synthesis of 34 analogues. The structure-activity relationship study showed that in addition to haloperidol (1), eight analogues, some of which were smaller than 1, potently inhibited Eis (IC50 ≤ 1 μM). Crystal structures of Eis in complexes with three potent analogues and droperidol (DPD), an antiemetic and antipsychotic, were determined. Three compounds partially restored KAN sensitivity of a KAN-resistant Mtb strain K204 overexpressing Eis. The Eis inhibitors generally did not exhibit cytotoxicity against mammalian cells. All tested compounds were modestly metabolically stable in human liver microsomes, exhibiting 30-60% metabolism over the course of the assay. While direct repurposing of haloperidol as an anti-TB agent is unlikely due to its neurotoxicity, this study reveals potential approaches to modifying this chemical scaffold to minimize toxicity and improve metabolic stability, while preserving potent Eis inhibition.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Melisa J Willby
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention Atlanta GA 30329 USA
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Selina Y L Holbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Kyle Krieger
- Center for Global Infectious Disease Research, Seattle Children's Research Institute 307 Westlake Avenue N Seattle WA 98109 USA
| | - James E Posey
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention Atlanta GA 30329 USA
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children's Research Institute 307 Westlake Avenue N Seattle WA 98109 USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| |
Collapse
|
12
|
Pyrrolopyrazine derivatives: synthetic approaches and biological activities. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Lee JH, Yoon SH, Nam S, Kim I. One-pot three-component coupling access to 1,2-dihydropyrrolo[1,2-a]pyrazine-1-phosphonates: multi-functionalization of a pyrazine unit. Org Biomol Chem 2021; 19:6066-6084. [PMID: 34137765 DOI: 10.1039/d1ob00885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new pyrrolo[1,2-a]pyrazine chemical space with a poly-substituted pyrazine unit was readily accessed by Sc(OTf)3-catalyzed one-pot three-component coupling of a pyrrole derivative, amine, and trialkylphosphite under environment-friendly conditions. The formation of multiple bonds (two C-N and one C-P) via a domino process consisting of the chemoselective Kabachnik-Fields reaction and intramolecular cyclodehydration allowed for the construction of highly functionalized pyrazines.
Collapse
Affiliation(s)
- Jeong Hwa Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | - Seok Hyun Yoon
- Graduate Program of Industrial Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Seonghyeon Nam
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
14
|
Zhang G, Yu Y, He C, Wang Z, Chen Y. Palladium(II)-Catalyzed C(sp)–C(sp2) Coupling: A Direct Approach to Multi-Substituted Pyrrolo[1,2-a]pyrazines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A direct synthesis of multi-substituted pyrrolo[1,2-a]pyrazines via palladium(II)-catalyzed C(sp)–C(sp2) cascade coupling and intramolecular cyclization in the presence of ligand was developed. This reaction originates from phenylboronic acids and readily synthesized 2-carbonyl- or 2-formylpyrroloacetonitriles, and affords products in good to excellent yields for a diversity of substrates. Additionally, a possible mechanism for the transformation is proposed.
Collapse
|
15
|
Arora G, Bothra A, Prosser G, Arora K, Sajid A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 2020; 288:3375-3393. [PMID: 33021056 DOI: 10.1111/febs.15582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the primary causes of deaths due to infectious diseases. The current TB regimen is long and complex, failing of which leads to relapse and/or the emergence of drug resistance. There is a critical need to understand the mechanisms of resistance development. With increasing drug pressure, Mycobacterium tuberculosis (Mtb) activates various pathways to counter drug-related toxicity. Signaling modules steer the evolution of Mtb to a variant that can survive, persist, adapt, and emerge as a form that is resistant to one or more drugs. Recent studies reveal that about 1/3rd of the annotated Mtb proteome is modified post-translationally, with a large number of these proteins being essential for mycobacterial survival. Post-translational modifications (PTMs) such as phosphorylation, acetylation, and pupylation play a salient role in mycobacterial virulence, pathogenesis, and metabolism. The role of many other PTMs is still emerging. Understanding the signaling pathways and PTMs may assist clinical strategies and drug development for Mtb. In this review, we explore the contribution of PTMs to mycobacterial physiology, describe the related cellular processes, and discuss how these processes are linked to drug resistance. A significant number of drug targets, InhA, RpoB, EmbR, and KatG, are modified at multiple residues via PTMs. A better understanding of drug-resistance regulons and associated PTMs will aid in developing effective drugs against TB.
Collapse
Affiliation(s)
- Gunjan Arora
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ankur Bothra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gareth Prosser
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Kriti Arora
- Proteus Digital Health, Inc., Redwood City, CA, USA
| | - Andaleeb Sajid
- Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep 2020; 39:221456. [PMID: 31820790 PMCID: PMC6923341 DOI: 10.1042/bsr20191661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), a leading infectious disease caused by Mycobacterium tuberculosis strain, takes four human lives every minute globally. Paucity of knowledge on M. tuberculosis virulence and antibiotic resistance is the major challenge for tuberculosis control. We have identified 47 acetyltransferases in the M. tuberculosis, which use diverse substrates including antibiotic, amino acids, and other chemical molecules. Through comparative analysis of the protein file of the virulent M. tuberculosis H37Rv strain and the avirulent M. tuberculosis H37Ra strain, we identified one acetyltransferase that shows significant variations with N-terminal deletion, possibly influencing its physicochemical properties. We also found that one acetyltransferase has three types of post-translation modifications (lysine acetylation, succinylation, and glutarylation). The genome context analysis showed that many acetyltransferases with their neighboring genes belong to one operon. By data mining from published transcriptional profiles of M. tuberculosis exposed to diverse treatments, we revealed that several acetyltransferases may be functional during M. tuberculosis infection. Insights obtained from the present study can potentially provide clues for developing novel TB therapeutic interventions.
Collapse
|
17
|
Punetha A, Ngo HX, Holbrook SYL, Green KD, Willby MJ, Bonnett SA, Krieger K, Dennis EK, Posey JE, Parish T, Tsodikov OV, Garneau-Tsodikova S. Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from Mycobacterium tuberculosis. ACS Chem Biol 2020; 15:1581-1594. [PMID: 32421305 DOI: 10.1021/acschembio.0c00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis (Mtb) is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of Mtb, we designed and optimized structurally unique thieno[2,3-d]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy. We obtained 12 crystal structures of enzyme-inhibitor complexes, which guided our rational structure-based design of 72 thieno[2,3-d]pyrimidine analogues divided into three families. We evaluated the potency of these inhibitors in vitro as well as their ability to restore the activity of kanamycin in a resistant strain of Mtb, in which Eis was upregulated. Furthermore, we evaluated the metabolic stability of 11 compounds in vitro. This study showcases how structural information can guide Eis inhibitor design.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Huy X. Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Selina Y. L. Holbrook
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Melisa J. Willby
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Shilah A. Bonnett
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102, United States
| | - Kyle Krieger
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102, United States
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, Washington 98145, United States
| | - Emily K. Dennis
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102, United States
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, Washington 98145, United States
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
18
|
Affiliation(s)
- Matthew D. Lloyd
- Drug & Target Development, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
19
|
Sagitova EF, Sobenina LN, Trofimov BA. From Acylethynylpyrroles to Pyrrolo[1,2-a]pyrazines in One Step. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020020082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Dennis EK, Garneau-Tsodikova S. Synergistic combinations of azoles and antihistamines against Candida species in vitro. Med Mycol 2020; 57:874-884. [PMID: 30295881 DOI: 10.1093/mmy/myy088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a major cause of skin and mucosal membrane disease. Immunocompromised individuals, such as those undergoing chemotherapy, are most susceptible to fungal infections. With a growing population of immunocompromised patients, there are many reports of increasing numbers of infections and of fungal strains resistant to current antifungals. One way to treat drug-resistant infections is to administer combinations of drugs to patients. Azoles are the most prescribed antifungals, as they are broad-spectrum and orally bioavailable. Terfenadine (TERF) and ebastine (EBA) are second-generation antihistamines, with EBA being used in many countries. In this study, we explored combinations of seven azole antifungals and two antihistamines (TERF and EBA) against a panel of 13 Candida fungal strains. We found 55 out of 91 combinations tested of TERF and EBA against the various fungal strains to be synergistic with the azoles. To evaluate the efficiency of these combinations to inhibit fungal growth, we performed time-kill assays. We also investigated the ability of these combinations to disrupt biofilm formation. Finally, we tested the specificity of the combinations towards fungal cells by mammalian cytotoxicity assays. These findings suggest a potential new strategy for targeting drug-resistant Candida infections.
Collapse
Affiliation(s)
- Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Seo Y, Lee JH, Park SH, Namkung W, Kim I. Expansion of chemical space based on a pyrrolo[1,2-a]pyrazine core: Synthesis and its anticancer activity in prostate cancer and breast cancer cells. Eur J Med Chem 2019; 188:111988. [PMID: 31901746 DOI: 10.1016/j.ejmech.2019.111988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
In connection with our continued research to generate new aza-fused heteroaromatic chemical scaffolds, we developed a highly atom-economical three-component route to novel 3,4-dihydropyrrolo[1,2-a]pyrazine ring skeleton multi-functionalized on the pyrazine unit. This [4+1+1] annulation approach led us to gain access to a new N-fused bicyclic chemical space having two distinctive functional groups (heteroaryl and aroyl) in a trans manner. Investigation of anticancer activity of the synthesized compounds and their derivatives revealed that (3R*,4S*)-3-(4-bromophenyl)-4-(4-fluorobenzoyl)-2-(2-oxo-2-phenylethyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-2-ium bromide (3h) has potent anticancer activity. 3h significantly inhibited cell viability in prostate cancer cells (PC-3) and breast cancer cells (MCF-7) with IC50 value of 1.18 ± 0.05 μM and 1.95 ± 0.04 μM, respectively. In addition, 3h strongly reduced cell migration in a dose dependent manner, and induced apoptosis via caspase-3 activation and cleavage of PARP in PC-3 and MCF-7 cells. Our results in this study imply that 3h can be a potential anticancer agent against prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Yohan Seo
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jeong Hwa Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - So-Hyeon Park
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, 21983, Republic of Korea
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science Graduate School, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
22
|
Jyothi B, Madhavi N. Green Synthesis and Antimicrobial Activity of Some Novel N-Arylimidazo[1,2-a]pyrazine-2-Carboxamide Derivatives. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2020.22365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The article deals with the synthesis of some novel N-arylimidazo[1,2-a]pyrazine-2-carboxamides (7a-l) by condensation reaction of imidazo[1,2-a]pyrazine-2-carboxylic acid (5) with different aliphatic/aromatic amines (6a-l) by using 1-methylimidazole, Mukaiyama’s reagent and 2-chloro-1-methylpyridinium iodide under microwave irradiation conditions. A new series of compounds 7 have been prepared from 2-iodopyrazine (1). Compound 1 on purged with ammonia gas in the presence of Cu2O and K2CO3 furnishes pyrazin-2-amine (2), which is treated with ethyl 3-bromo-2-oxopropanoate (3) to produce ethyl imidazo[1,2-a]pyrazine-2-carboxylate (4), which on hydrolysis with NaOH yields imidazo[1,2-a]pyrazine-2-carboxylic acid (5). The structures of the newly synthesized compounds have been elucidated on the basis of spectral (IR, 1H and 13C NMR and MS) and analytical data. Compounds 7a-l have also been screened for their antimicrobial activity. Some of the compounds exhibit promising antimicrobial activity
Collapse
Affiliation(s)
- Boggavarapu Jyothi
- Department of Chemistry, Swarna Bharathi Institute of Science and Technology, Khammam-507002, India
| | | |
Collapse
|
23
|
Green KD, Punetha A, Hou C, Garneau-Tsodikova S, Tsodikov OV. Probing the Robustness of Inhibitors of Tuberculosis Aminoglycoside Resistance Enzyme Eis by Mutagenesis. ACS Infect Dis 2019; 5:1772-1778. [PMID: 31433614 DOI: 10.1021/acsinfecdis.9b00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Each year, millions of people worldwide contract tuberculosis (TB), the deadliest infection. The spread of infections with drug-resistant strains of Mycobacterium tuberculosis (Mtb) that are refractory to treatment poses a major global challenge. A major cause of resistance to antitubercular drugs of last resort, aminoglycosides, is overexpression of the Eis (enhanced intracellular survival) enzyme of Mtb, which inactivates aminoglycosides by acetylating them. We showed previously that this inactivation of aminoglycosides could be overcome by our recently reported Eis inhibitors that are currently in development as potential aminoglycoside adjunctive therapeutics against drug-resistant TB. To interrogate the robustness of the Eis inhibitors, we investigated the enzymatic activity of Eis and its inhibition by Eis inhibitors from three different structural families for nine single-residue mutants of Eis, including those found in the clinic. Three engineered mutations of the substrate binding site, D26A, W36A, and F84A, abolished inhibitor binding while compromising Eis enzymatic activity 2- to 3-fold. All other Eis mutants, including clinically observed ones, were potently inhibited by at least one inhibitor. This study helps position us one step ahead of Mtb resistance to Eis inhibitors as they are being developed for TB therapy.
Collapse
Affiliation(s)
- Keith D. Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
24
|
Kim J, Park M, Choi J, Singh DK, Kwon HJ, Kim SH, Kim I. Design, synthesis, and biological evaluation of novel pyrrolo[1,2-a]pyrazine derivatives. Bioorg Med Chem Lett 2019; 29:1350-1356. [DOI: 10.1016/j.bmcl.2019.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
|
25
|
Dagar A, Bae GH, Lee JH, Kim I. Tandem [4+1+1] Annulation Approach to 4-Acyl-3,4-dihydropyrrolo[1,2-a]pyrazines: Diastereoselective Construction of Dihydropyrazine Units from Pyrroles. J Org Chem 2019; 84:6916-6927. [DOI: 10.1021/acs.joc.9b00724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Anuradha Dagar
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Gi Hun Bae
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jeong Hwa Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
26
|
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, Aínsa JA. Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Front Microbiol 2019; 10:46. [PMID: 30761098 PMCID: PMC6363676 DOI: 10.3389/fmicb.2019.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside acetyltransferases are important determinants of resistance to aminoglycoside antibiotics in most bacterial genera. In mycobacteria, however, aminoglycoside acetyltransferases contribute only partially to aminoglycoside susceptibility since they are related with low level resistance to these antibiotics (while high level aminoglycoside resistance is due to mutations in the ribosome). Instead, aminoglycoside acetyltransferases contribute to other bacterial functions, and this can explain its widespread presence along species of genus Mycobacterium. This review is focused on two mycobacterial aminoglycoside acetyltransferase enzymes. First, the aminoglycoside 2'-N-acetyltransferase [AAC(2')], which was identified as a determinant of weak aminoglycoside resistance in M. fortuitum, and later found to be widespread in most mycobacterial species; AAC(2') enzymes have been associated with resistance to cell wall degradative enzymes, and bactericidal mode of action of aminoglycosides. Second, the Eis aminoglycoside acetyltransferase, which was identified originally as a virulence determinant in M. tuberculosis (enhanced intracellular survival); Eis protein in fact controls production of pro-inflammatory cytokines and other pathways. The relation of Eis with aminoglycoside susceptibility was found after the years, and reaches clinical significance only in M. tuberculosis isolates resistant to the second-line drug kanamycin. Given the role of AAC(2') and Eis proteins in mycobacterial biology, inhibitory molecules have been identified, more abundantly in case of Eis. In conclusion, AAC(2') and Eis have evolved from a marginal role as potential drug resistance mechanisms into a promising future as drug targets.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| | - Esther Pérez-Herrán
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martín
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Kashyap A, Singh PK, Silakari O. Mechanistic investigation of resistance via drug-inactivating enzymes in Mycobacterium tuberculosis. Drug Metab Rev 2018; 50:448-465. [PMID: 30343607 DOI: 10.1080/03602532.2018.1533966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Tuberculosis (TB) is a serious major health concern that has existed from millennia. According to annual WHO report 2016, it is considered as world's ninth highest killer disease by single infectious agent, ranking above HIV/AIDS. To worsen the scenario the development of multi-drug resistant tuberculosis (MDR-TB) and extremely drug-resistant tuberculosis (XDR-TB) have significantly reduced the success rate of TB treatment. Several efforts are being made to handle pharmacodynamic resistance (MDR and XDR-TB) involving designing of new inhibitors, targeting mutated target or by multi-targeting agents. However, the issue of pharmacokinetic resistance in TB is not being addressed appropriately till date. Pharmacokinetic mode of resistance involves an intrinsic mechanism of bacterial drug resistance via expression of various enzymes and efflux pumps that are responsible for the loss of activity of the therapeutic agents. Mycobacterium tuberculosis is also intrinsically resistant to various approved agents via pharmacokinetic mechanism of resistance. Several bacterial enzymes are encoded that either degrade or modifies the drugs and renders them ineffective. Targeting such inactivating bacterial enzymes provides a novel approach to make the current therapy effective and combat the problem of resistance. This review provides an insight into different bacterial enzymes which are responsible for pharmacokinetic drug resistance in TB. The structure attributes and mechanism of catalysis employed by these enzymes to inactivate drug have also been discussed which may provide basis for developing novel therapeutic agents for resistant TB.
Collapse
Affiliation(s)
- Aanchal Kashyap
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | - Pankaj Kumar Singh
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | - Om Silakari
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| |
Collapse
|
28
|
Luthra S, Rominski A, Sander P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol 2018; 9:2179. [PMID: 30258428 PMCID: PMC6143652 DOI: 10.3389/fmicb.2018.02179] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from “curable” skin infections to only “manageable” pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria’s high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen’s phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, β-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a β-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes.
Collapse
Affiliation(s)
- Sakshi Luthra
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Anna Rominski
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,National Center for Mycobacteria, Zurich, Switzerland
| |
Collapse
|
29
|
Scutigliani EM, Scholl ER, Grootemaat AE, Khanal S, Kochan JA, Krawczyk PM, Reits EA, Garzan A, Ngo HX, Green KD, Garneau-Tsodikova S, Ruijter JM, van Veen HA, van der Wel NN. Interfering With DNA Decondensation as a Strategy Against Mycobacteria. Front Microbiol 2018; 9:2034. [PMID: 30233521 PMCID: PMC6135046 DOI: 10.3389/fmicb.2018.02034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.
Collapse
Affiliation(s)
- Enzo M Scutigliani
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Edwin R Scholl
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Sadhana Khanal
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Jakub A Kochan
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Eric A Reits
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Jan M Ruijter
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Henk A van Veen
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
30
|
Ngo HX, Green KD, Gajadeera CS, Willby MJ, Holbrook SYL, Hou C, Garzan A, Mayhoub AS, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Potent 1,2,4-Triazino[5,6 b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis. ACS Infect Dis 2018; 4:1030-1040. [PMID: 29601176 DOI: 10.1021/acsinfecdis.8b00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A common cause of resistance to kanamycin (KAN) in tuberculosis is overexpression of the enhanced intracellular survival (Eis) protein. Eis is an acetyltransferase that multiacetylates KAN and other aminoglycosides, rendering them unable to bind the bacterial ribosome. By high-throughput screening, a series of substituted 1,2,4-triazino[5,6 b]indole-3-thioether molecules were identified as effective Eis inhibitors. Herein, we purchased 17 and synthesized 22 new compounds, evaluated their potency, and characterized their steady-state kinetics. Four inhibitors were found not only to inhibit Eis in vitro, but also to act as adjuvants of KAN and partially restore KAN sensitivity in a Mycobacterium tuberculosis KAN-resistant strain in which Eis is upregulated. A crystal structure of Eis in complex with a potent inhibitor and CoA shows that the inhibitors bind in the aminoglycoside binding site snugly inserted into a hydrophobic cavity. These inhibitors will undergo preclinical development as novel KAN adjuvant therapies to treat KAN-resistant tuberculosis.
Collapse
Affiliation(s)
- Huy X. Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Chathurada S. Gajadeera
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Melisa J. Willby
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Selina Y. L. Holbrook
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Abdelrahman S. Mayhoub
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Oleg. V. Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
32
|
Green KD, Biswas T, Pang AH, Willby MJ, Reed MS, Stuchlik O, Pohl J, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Acetylation by Eis and Deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: Biochemical and Structural Insight. Biochemistry 2018; 57:781-790. [PMID: 29345920 DOI: 10.1021/acs.biochem.7b01089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial nucleoid-associated proteins (NAPs) are critical to genome integrity and chromosome maintenance. Post-translational modifications of bacterial NAPs appear to function similarly to their better studied mammalian counterparts. The histone-like NAP HupB from Mycobacterium tuberculosis (Mtb) was previously observed to be acetylated by the acetyltransferase Eis, leading to genome reorganization. We report biochemical and structural aspects of acetylation of HupB by Eis. We also found that the SirT-family NAD+-dependent deacetylase Rv1151c from Mtb deacetylated HupB in vitro and characterized the deacetylation kinetics. We propose that activities of Eis and Rv1151c could regulate the acetylation status of HupB to remodel the mycobacterial chromosome in response to environmental changes.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | | | | | | | | | | | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
33
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|