1
|
Kiefer AF, Schütz C, Englisch CN, Kolling D, Speicher S, Kany AM, Shafiei R, Wadood NA, Aljohmani A, Wirschem N, Jumde RP, Klein A, Sikandar A, Park Y, Krasteva‐Christ G, Yildiz D, Abdelsamie AS, Rox K, Köhnke J, Müller R, Bischoff M, Haupenthal J, Hirsch AKH. Dipeptidic Phosphonates: Potent Inhibitors of Pseudomonas aeruginosa Elastase B Showing Efficacy in a Murine Keratitis Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411807. [PMID: 39973061 PMCID: PMC11984924 DOI: 10.1002/advs.202411807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Indexed: 02/21/2025]
Abstract
The ubiquitous opportunistic pathogen Pseudomonas aeruginosa is responsible for severe infections and notoriously known for acquiring antimicrobial resistance. Inhibiting the bacterium's extracellular elastase, LasB - a zinc-dependent protease - presents a promising strategy to mitigate its virulence. Within this medicinal chemistry-driven hit-to-lead optimization campaign, a new series of highly potent dipeptidic phosphonates is designed and synthesized following a structure-based drug-discovery approach. In vitro and in vivo evaluation reveal beneficial pharmacokinetic profiles, excellent selectivity over human off-targets and good tolerability in murine toxicity studies. Ultimately, the scaffold presented herein demonstrates promising in vivo efficacy in a murine Pseudomonas aeruginosa keratitis model in combination with the antibiotic meropenem.
Collapse
|
2
|
Zhang ZS, Zhao DS, Zhu D, Guan M, Xiong LT, He Z, Li Y, Shi Y, Xu ZL, Deng X, Cui ZN. Design, Synthesis, and Biological Evaluation of Asymmetrical Disulfides Based on Garlic Extract as Pseudomonas aeruginosa pqs Quorum Sensing Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5850-5859. [PMID: 40014758 DOI: 10.1021/acs.jafc.4c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pseudomonas aeruginosa is a widely encountered bacterium linked to the deterioration of food products and represents a notable concern for public health safety. Disulfides serve as significant pharmacologically active scaffolds exhibiting antibacterial, antiviral, and anticancer properties; however, reports on their activity as quorum sensing inhibitors (QSIs) against P. aeruginosa are limited. In our work, asymmetrical disulfides were designed and synthesized, utilizing natural products, such as allicin, ajoene, diallyl disulfide (DADS), hordenine, and cinnamic acid, as lead compounds. By screening for lasB, rhlA, and pqsA promoter activity, two highly effective QSIs were identified. Compounds 7d and 4c show effectiveness in reducing the synthesis of different virulence factors, the creation of biofilms, and movement capabilities. Subsequent validation using the Galleria mellonella larvae model confirmed their robust in vivo efficacy. Moreover, their combination with antibiotics markedly augmented the antibacterial activity. Mechanism studies employed by transcriptome analysis, quantitative reverse transcription-PCR (qRT-PCR), surface plasmon resonance, and molecular docking demonstrate that compound 7d disrupts the quorum sensing system by interacting with PqsR. These findings suggest that our disulfide derivatives hold promise for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Di Zhu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Guan
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yasheng Li
- Department of Infectious Diseases, Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yu Shi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ling Xu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Mielniczuk S, Hoff K, Baselious F, Li Y, Haupenthal J, Kany AM, Riedner M, Rohde H, Rox K, Hirsch AKH, Krimm I, Sippl W, Holl R. Development of Fragment-Based Inhibitors of the Bacterial Deacetylase LpxC with Low Nanomolar Activity. J Med Chem 2024; 67:17363-17391. [PMID: 39303295 PMCID: PMC11472313 DOI: 10.1021/acs.jmedchem.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
In a fragment-based approach using NMR spectroscopy, benzyloxyacetohydroxamic acid-derived inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the uridine diphosphate-binding site of the enzyme were developed. By appending privileged fragments via a suitable linker, potent LpxC inhibitors with promising antibacterial activities could be obtained, like the one-digit nanomolar LpxC inhibitor (S)-13j [Ki (EcLpxC C63A) = 9.5 nM; Ki (PaLpxC): 5.6 nM]. To rationalize the observed structure-activity relationships, molecular docking and molecular dynamics studies were performed. Initial in vitro absorption-distribution-metabolism-excretion-toxicity (ADMET) studies of the most potent compounds have paved the way for multiparameter optimization of our newly developed isoserine-based amides.
Collapse
Affiliation(s)
- Sebastian Mielniczuk
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| | - Katharina Hoff
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| | - Fady Baselious
- Institute
of Pharmacy, Martin-Luther-University of
Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany
| | - Yunqi Li
- Team
“Small Molecules for Biological Targets”, Institut Convergence
Plascan, Centre de Recherche en Cancérologie de Lyon, INSERM
U1052-CNRS UMR5286, Centre Léon Bérard, Université
de Lyon, Université Claude Bernard
Lyon1, 69008 Lyon, France
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences & School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Maria Riedner
- Technology
Platform Mass Spectrometry, Universität
Hamburg, Mittelweg 177, 20148 Hamburg, Germany
| | - Holger Rohde
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
- Institute
of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-infectives, Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabelle Krimm
- Team
“Small Molecules for Biological Targets”, Institut Convergence
Plascan, Centre de Recherche en Cancérologie de Lyon, INSERM
U1052-CNRS UMR5286, Centre Léon Bérard, Université
de Lyon, Université Claude Bernard
Lyon1, 69008 Lyon, France
| | - Wolfgang Sippl
- Institute
of Pharmacy, Martin-Luther-University of
Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany
| | - Ralph Holl
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Ren Y, You X, Zhu R, Li D, Wang C, He Z, Hu Y, Li Y, Liu X, Li Y. Mutation of Pseudomonas aeruginosa lasI/rhlI diminishes its cytotoxicity, oxidative stress, inflammation, and apoptosis on THP-1 macrophages. Microbiol Spectr 2024; 12:e0414623. [PMID: 39162513 PMCID: PMC11448257 DOI: 10.1128/spectrum.04146-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
The management of Pseudomonas aeruginosa (P. aeruginosa) infections presents a substantial challenge to clinics and public health, emphasizing the urgent need for innovative strategies to address this issue. Quorum sensing (QS) is an intercellular communication mechanism that coordinates bacterial activities involved in various virulence mechanisms, such as acquiring host nutrients, facilitating biofilm formation, enhancing motility, secreting virulence factors, and evading host immune responses, all of which play a crucial role in the colonization and infection of P. aeruginosa. The LasI/R and RhlI/R sub-systems dominate in the QS system of P. aeruginosa. Macrophages play a pivotal role in the host's innate immune response to P. aeruginosa invasion, particularly through phagocytosis as the initial host defense mechanism. This study investigated the effects of P. aeruginosa's QS system on THP-1 macrophages. Mutants of PAO1 with lasI/rhlI deletion, as well as their corresponding complemented strains, were obtained, and significant downregulation of QS-related genes was observed in the mutants. Furthermore, the ΔlasI and ΔlasIΔrhlI mutants exhibited significantly attenuated virulence in terms of biofilm formation, extracellular polymeric substances synthesis, bacterial adhesion, motility, and virulence factors production. When infected with ΔlasI and ΔlasIΔrhlI mutants, THP-1 macrophages exhibited enhanced scavenging ability against the mutants and demonstrated resistance to cytotoxicity, oxidative stress, inflammatory response, and apoptosis induced by the culture supernatants of these mutant strains. These findings offer novel insights into the mechanisms underlying how the lasI/rhlI mutation attenuates cytotoxicity, oxidative stress, inflammation, and apoptosis in macrophages induced by P. aeruginosa.IMPORTANCEP. aeruginosa is classified as one of the ESKAPE pathogens and poses a global public health concern. The QS system of this versatile pathogen contributes to a broad spectrum of virulence, thereby constraining therapeutic options for serious infections. This study illustrated that the lasI/rhlI mutation of the QS system plays a prominent role in attenuating the virulence of P. aeruginosa by affecting bacterial adhesion, biofilm formation, extracellular polymeric substances synthesis, bacterial motility, and virulence factors' production. Notably, THP-1 macrophages infected with mutant strains exhibited increased phagocytic activity in eliminating intracellular bacteria and enhanced resistance to cytotoxicity, oxidative stress, inflammation, and apoptosis. These findings suggest that targeted intervention toward the QS system is anticipated to diminish the pathogenicity of P. aeruginosa to THP-1 macrophages.
Collapse
Affiliation(s)
- Yanying Ren
- Dazhou integrated Traditional Chinese Medicine & Western Medicine Hospital, Dazhou Second People's Hospital, Dazhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojuan You
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Rui Zhu
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Dengzhou Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Chunxia Wang
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Zhiqiang He
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yue Hu
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yifan Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinwei Liu
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yongwei Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
- The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, China
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, China
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Khan F. Multifaceted strategies for alleviating Pseudomonas aeruginosa infection by targeting protease activity: Natural and synthetic molecules. Int J Biol Macromol 2024; 278:134533. [PMID: 39116989 DOI: 10.1016/j.ijbiomac.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Pseudomonas aeruginosa has become a top-priority pathogen in the health sector because it is ubiquitous, has high metabolic/genetic versatility, and is identified as an opportunistic pathogen. The production of numerous virulence factors by P. aeruginosa was reported to act individually or cooperatively to make them robots invasion, adherences, persistence, proliferation, and protection against host immune systems. P. aeruginosa produces various kinds of extracellular proteases such as alkaline protease, protease IV, elastase A, elastase B, large protease A, Pseudomonas small protease, P. aeruginosa aminopeptidase, and MucD. These proteases effectively allow the cells to invade and destroy host cells. Thus, inhibiting these protease activities has been recognized as a promising approach to controlling the infection caused by P. aeruginosa. The present review discussed in detail the characteristics of these proteases and their role in infection to the host system. The second part of the review discussed the recent updates on the multiple strategies for attenuating or inhibiting protease activity. These strategies include the application of natural and synthetic molecules, as well as metallic/polymeric nanomaterials. It has also been reported that a propeptide present in the middle domain of protease IV also attenuates the virulence properties and infection ability of P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Metelkina O, Konstantinović J, Klein A, Shafiei R, Fares M, Alhayek A, Yahiaoui S, Elgaher WAM, Haupenthal J, Titz A, Hirsch AKH. Dual inhibitors of Pseudomonas aeruginosa virulence factors LecA and LasB. Chem Sci 2024; 15:13333-13342. [PMID: 39183927 PMCID: PMC11339798 DOI: 10.1039/d4sc02703e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Dual inhibitors of two key virulence factors of Pseudomonas aeruginosa, the lectin LecA and the protease LasB, open up an opportunity in the current antimicrobial-resistance crisis. A molecular hybridization approach enabled the discovery of potent, selective, and non-toxic thiol-based inhibitors, which simultaneously inhibit these two major extracellular virulence factors and therefore synergistically interfere with virulence. We further demonstrated that the dimerization of these monovalent dual inhibitors under physiological conditions affords divalent inhibitors of LecA with a 200-fold increase in binding affinity. The bifunctional LecA/LasB-blocker 12 showed superiority for the inhibition of virulence mediated by both targets over the individual inhibitors or combinations thereof in vitro. Our study sets the stage for a systematic exploration of dual inhibitors as pathoblockers for a more effective treatment of P. aeruginosa infections and the concept can certainly be extended to other targets and pathogens.
Collapse
Affiliation(s)
- Olga Metelkina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Standort Hannover - Braunschweig, 38124 Braunschweig Germany
- Department of Chemistry, Saarland University 66123 Saarbrücken Germany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| | - Andreas Klein
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| | - Mario Fares
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Standort Hannover - Braunschweig, 38124 Braunschweig Germany
- Department of Chemistry, Saarland University 66123 Saarbrücken Germany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| | - Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Standort Hannover - Braunschweig, 38124 Braunschweig Germany
- Department of Chemistry, Saarland University 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Standort Hannover - Braunschweig, 38124 Braunschweig Germany
- Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| |
Collapse
|
7
|
Konstantinović J, Kany AM, Alhayek A, Abdelsamie AS, Sikandar A, Voos K, Yao Y, Andreas A, Shafiei R, Loretz B, Schönauer E, Bals R, Brandstetter H, Hartmann RW, Ducho C, Lehr CM, Beisswenger C, Müller R, Rox K, Haupenthal J, Hirsch AK. Inhibitors of the Elastase LasB for the Treatment of Pseudomonas aeruginosa Lung Infections. ACS CENTRAL SCIENCE 2023; 9:2205-2215. [PMID: 38161367 PMCID: PMC10755728 DOI: 10.1021/acscentsci.3c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 01/03/2024]
Abstract
Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa are emerging worldwide as a major threat to human health. Conventional antibiotic monotherapy suffers from rapid resistance development, underlining urgent need for novel treatment concepts. Here, we report on a nontraditional approach to combat P. aeruginosa-derived infections by targeting its main virulence factor, the elastase LasB. We discovered a new chemical class of phosphonates with an outstanding in vitro ADMET and PK profile, auspicious activity both in vitro and in vivo. We established the mode of action through a cocrystal structure of our lead compound with LasB and in several in vitro and ex vivo models. The proof of concept of a combination of our pathoblocker with levofloxacin in a murine neutropenic lung infection model and the reduction of LasB protein levels in blood as a proof of target engagement demonstrate the great potential for use as an adjunctive treatment of lung infections in humans.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Alaa Alhayek
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Ahmed S. Abdelsamie
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department
of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National
Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Asfandyar Sikandar
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Katrin Voos
- Department
of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Yiwen Yao
- Department
of Internal Medicine V − Pulmonology, Allergology and Critical
Care Medicine, Saarland University, Homburg 66421, Germany
| | - Anastasia Andreas
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Roya Shafiei
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Esther Schönauer
- Department
of Biosciences and Medical Biology, Division of Structural Biology, University of Salzburg, Salzburg 5020, Austria
| | - Robert Bals
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department
of Internal Medicine V − Pulmonology, Allergology and Critical
Care Medicine, Saarland University, Homburg 66421, Germany
| | - Hans Brandstetter
- Department
of Biosciences and Medical Biology, Division of Structural Biology, University of Salzburg, Salzburg 5020, Austria
| | - Rolf W. Hartmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
| | - Christian Ducho
- Department
of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Claus-Michael Lehr
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
| | - Christoph Beisswenger
- Department
of Internal Medicine V − Pulmonology, Allergology and Critical
Care Medicine, Saarland University, Homburg 66421, Germany
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
- Helmholtz
International Lab for Anti-infectives, Saarbrücken 66123, Germany
| | - Katharina Rox
- Department
of Chemical Biology (CBIO), Helmholtz Centre
for Infection Research (HZI), Braunschweig 38124, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Anna K.H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
- Helmholtz
International Lab for Anti-infectives, Saarbrücken 66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| |
Collapse
|
8
|
Kolling D, Haupenthal J, Hirsch AKH, Koehnke J. Facile Production of the Pseudomonas aeruginosa Virulence Factor LasB in Escherichia coli for Structure-Based Drug Design. Chembiochem 2023; 24:e202300185. [PMID: 37195753 DOI: 10.1002/cbic.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/18/2023]
Abstract
The human pathogen Pseudomonas aeruginosa has a number of virulence factors at its disposal that play crucial roles in the progression of infection. LasB is one of the major virulence factors and exerts its effects through elastolytic and proteolytic activities aimed at dissolving connective tissue and inactivating host defense proteins. LasB is of great interest for the development of novel pathoblockers to temper the virulence, but access has thus far largely been limited to protein isolated from Pseudomonas cultures. Here, we describe a new protocol for high-level production of native LasB in Escherichia coli. We demonstrate that this facile approach is suitable for the production of mutant, thus far inaccessible LasB variants, and characterize the proteins biochemically and structurally. We expect that easy access to LasB will accelerate the development of inhibitors for this important virulence factor.
Collapse
Affiliation(s)
- Dominik Kolling
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, University of Saarland, Campus Saarbrücken, 66123, Saarbrücken, UK
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, University of Saarland, Campus Saarbrücken, 66123, Saarbrücken, UK
| | - Jesko Koehnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 800, Glasgow, UK
- Institute of Food Chemistry, Leibniz University Hannover, Callinstr. 5, 30167, Hannover, Germany
| |
Collapse
|
9
|
Di Leo R, Cuffaro D, Rossello A, Nuti E. Bacterial Zinc Metalloenzyme Inhibitors: Recent Advances and Future Perspectives. Molecules 2023; 28:molecules28114378. [PMID: 37298854 DOI: 10.3390/molecules28114378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Human deaths caused by Gram-negative bacteria keep rising due to the multidrug resistance (MDR) phenomenon. Therefore, it is a priority to develop novel antibiotics with different mechanisms of action. Several bacterial zinc metalloenzymes are becoming attractive targets since they do not show any similarities with the human endogenous zinc-metalloproteinases. In the last decades, there has been an increasing interest from both industry and academia in developing new inhibitors against those enzymes involved in lipid A biosynthesis, and bacteria nutrition and sporulation, e.g., UDP-[3-O-(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), thermolysin (TLN), and pseudolysin (PLN). Nevertheless, targeting these bacterial enzymes is harder than expected and the lack of good clinical candidates suggests that more effort is needed. This review gives an overview of bacterial zinc metalloenzyme inhibitors that have been synthesized so far, highlighting the structural features essential for inhibitory activity and the structure-activity relationships. Our discussion may stimulate and help further studies on bacterial zinc metalloenzyme inhibitors as possible novel antibacterial drugs.
Collapse
Affiliation(s)
- Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
10
|
Wimmer S, Hoff K, Martin B, Grewer M, Denni L, Lascorz Massanet R, Raimondi MV, Bülbül EF, Melesina J, Hotop SK, Haupenthal J, Rohde H, Heisig P, Hirsch AKH, Brönstrup M, Sippl W, Holl R. Synthesis, biological evaluation, and molecular docking studies of aldotetronic acid-based LpxC inhibitors. Bioorg Chem 2023; 131:106331. [PMID: 36587505 DOI: 10.1016/j.bioorg.2022.106331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.
Collapse
Affiliation(s)
- Stefan Wimmer
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Katharina Hoff
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Benedikt Martin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Martin Grewer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Laura Denni
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Raquel Lascorz Massanet
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Maria Valeria Raimondi
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Emre F Bülbül
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Heisig
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Helmholtz International Lab for Anti-infectives, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany; Helmholtz International Lab for Anti-infectives, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Ralph Holl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.
| |
Collapse
|
11
|
Meiers J, Rox K, Titz A. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. J Med Chem 2022; 65:13988-14014. [PMID: 36201248 PMCID: PMC9619409 DOI: 10.1021/acs.jmedchem.2c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic Pseudomonas aeruginosa infections
are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance.
Fluoroquinolones are effective antibiotics but are linked to severe
side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components
and can be exploited for targeted drug delivery. In this work, several
fluoroquinolones were conjugated to lectin probes by cleavable peptide
linkers to yield lectin-targeted prodrugs. Mechanistically, these
conjugates therefore remain non-toxic in the systemic distribution
and will be activated to kill only once they have accumulated at the
infection site. The synthesized prodrugs proved stable in the presence
of host blood plasma and liver metabolism but rapidly released the
antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs
showed good absorption, distribution, metabolism, and elimination
(ADME) properties and reduced toxicity in vitro, thus establishing
the first lectin-targeted antibiotic prodrugs against P. aeruginosa.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
12
|
Camberlein V, Jézéquel G, Haupenthal J, Hirsch AKH. The Structures and Binding Modes of Small-Molecule Inhibitors of Pseudomonas aeruginosa Elastase LasB. Antibiotics (Basel) 2022; 11:1060. [PMID: 36009930 PMCID: PMC9404851 DOI: 10.3390/antibiotics11081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Elastase B (LasB) is a zinc metalloprotease and a crucial virulence factor of Pseudomonas aeruginosa. As the need for new strategies to fight antimicrobial resistance (AMR) constantly rises, this protein has become a key target in the development of novel antivirulence agents. The extensive knowledge of the structure of its active site, containing two subpockets and a zinc atom, led to various structure-based medicinal chemistry programs and the optimization of several chemical classes of inhibitors. This review provides a brief reminder of the structure of the active site and a summary of the disclosed P. aeruginosa LasB inhibitors. We specifically focused on the analysis of their binding modes with a detailed representation of them, hence giving an overview of the strategies aiming at targeting LasB by small molecules.
Collapse
Affiliation(s)
- Virgyl Camberlein
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Kaya C, Walter I, Alhayek A, Shafiei R, Jézéquel G, Andreas A, Konstantinović J, Schönauer E, Sikandar A, Haupenthal J, Müller R, Brandstetter H, Hartmann RW, Hirsch AK. Structure-Based Design of α-Substituted Mercaptoacetamides as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1010-1021. [PMID: 35451824 PMCID: PMC9112332 DOI: 10.1021/acsinfecdis.1c00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Antivirulence therapy
has become a widely applicable method for
fighting infections caused by multidrug-resistant bacteria. Among
the many virulence factors produced by the Gram-negative bacterium Pseudomonas aeruginosa, elastase (LasB) stands out
as an important target as it plays a pivotal role in the invasion
of the host tissue and evasion of the immune response. In this work,
we explored the recently reported LasB inhibitor class of α-benzyl-N-aryl mercaptoacetamides by exploiting the crystal structure
of one of the compounds. Our exploration yielded inhibitors that maintained
inhibitory activity, selectivity, and increased hydrophilicity. These
inhibitors were found to reduce the pathogenicity of the bacteria
and to maintain the integrity of lung and skin cells in the diseased
state. Furthermore, two most promising compounds increased the survival
rate of Galleria mellonella larvae
treated with P. aeruginosa culture
supernatant.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Veale CGL, Talukdar A, Vauzeilles B. ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chem Biol 2022; 17:728-743. [PMID: 35293726 DOI: 10.1021/acschembio.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clinton G. L. Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
17
|
Alhayek A, Khan ES, Schönauer E, Däinghaus T, Shafiei R, Voos K, Han MK, Ducho C, Posselt G, Wessler S, Brandstetter H, Haupenthal J, del Campo A, Hirsch AK. Inhibition of Collagenase Q1 of Bacillus cereus as a Novel Antivirulence Strategy for the Treatment of Skin-Wound Infections. ADVANCED THERAPEUTICS 2022; 5:2100222. [PMID: 35310821 PMCID: PMC7612511 DOI: 10.1002/adtp.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/02/2023]
Abstract
Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| | - Essak S. Khan
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Tobias Däinghaus
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Katrin Voos
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Mitchell K.L. Han
- Leibniz Institute for New Materials (INM) Saarl and University Campus D2 2, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Gernot Posselt
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Aránzazu del Campo
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department Saarland University 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Kaya C, Konstantinović J, Kany AM, Andreas A, Kramer JS, Brunst S, Weizel L, Rotter MJ, Frank D, Yahiaoui S, Müller R, Hartmann RW, Haupenthal J, Proschak E, Wichelhaus TA, Hirsch AKH. N-Aryl Mercaptopropionamides as Broad-Spectrum Inhibitors of Metallo-β-Lactamases. J Med Chem 2022; 65:3913-3922. [PMID: 35188771 DOI: 10.1021/acs.jmedchem.1c01755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drug-resistant pathogens pose a global challenge to public health as they cause diseases that are extremely difficult to cure. Metallo-β-lactamases (MBLs) are a diverse set of zinc-containing enzymes that catalyze the hydrolysis of β-lactam drugs, including carbapenems, which are considered as the last resort to fight severe infections. To restore the activity of current β-lactam antibiotics and to offer an orthogonal strategy to the discovery of new antibiotics, we have identified a series of polar N-aryl mercaptopropionamide derivatives as potent inhibitors of several class B1 MBLs. We have identified a hit structure with high selectivity restoring the effect of imipenem and reducing minimum inhibitory concentration (MIC) values up to 256-fold in resistant isolates from Escherichia coli. Furthermore, the combination of imipenem with our inhibitor showed in vivo efficacy in a Galleria mellonella model, increasing the survival rate of infected larvae by up to 31%.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Marco J Rotter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Denia Frank
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | - Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-infectives, Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland, (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-infectives, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
19
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substrate-Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202112295. [PMID: 34762767 PMCID: PMC9299988 DOI: 10.1002/anie.202112295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/11/2022]
Abstract
Extracellular virulence factors have emerged as attractive targets in the current antimicrobial resistance crisis. The Gram-negative pathogen Pseudomonas aeruginosa secretes the virulence factor elastase B (LasB), which plays an important role in the infection process. Here, we report a sub-micromolar, non-peptidic, fragment-like inhibitor of LasB discovered by careful visual inspection of structural data. Inspired by the natural LasB substrate, the original fragment was successfully merged and grown. The optimized inhibitor is accessible via simple chemistry and retained selectivity with a substantial improvement in activity, which can be rationalized by the crystal structure of LasB in complex with the inhibitor. We also demonstrate an improved in vivo efficacy of the optimized hit in Galleria mellonella larvae, highlighting the significance of this class of compounds as promising drug candidates.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Andreas M. Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| |
Collapse
|
20
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substratinspirierte Fragment‐Fusion und ‐Erweiterung führt zu wirksamen LasB‐Inhibitoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cansu Kaya
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Isabell Walter
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Samir Yahiaoui
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Asfandyar Sikandar
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Alaa Alhayek
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Jelena Konstantinović
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Andreas M. Kany
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jörg Haupenthal
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jesko Köhnke
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Rolf W. Hartmann
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Anna K. H. Hirsch
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| |
Collapse
|
21
|
Yahiaoui S, Voos K, Haupenthal J, Wichelhaus TA, Frank D, Weizel L, Rotter M, Brunst S, Kramer JS, Proschak E, Ducho C, Hirsch AKH. N-Aryl mercaptoacetamides as potential multi-target inhibitors of metallo-β-lactamases (MBLs) and the virulence factor LasB from Pseudomonas aeruginosa. RSC Med Chem 2021; 12:1698-1708. [PMID: 34778771 PMCID: PMC8528214 DOI: 10.1039/d1md00187f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing antimicrobial resistance is evolving to be one of the major threats to public health. To reduce the selection pressure and thus to avoid a fast development of resistance, novel approaches aim to target bacterial virulence instead of growth. Another strategy is to restore the activity of antibiotics already in clinical use. This can be achieved by the inhibition of resistance factors such as metallo-β-lactamases (MBLs). Since MBLs can cleave almost all β-lactam antibiotics, including the “last resort” carbapenems, their inhibition is of utmost importance. Here, we report on the synthesis and in vitro evaluation of N-aryl mercaptoacetamides as inhibitors of both clinically relevant MBLs and the virulence factor LasB from Pseudomonas aeruginosa. All tested N-aryl mercaptoacetamides showed low micromolar to submicromolar activities on the tested enzymes IMP-7, NDM-1 and VIM-1. The two most promising compounds were further examined in NDM-1 expressing Klebsiella pneumoniae isolates, where they restored the full activity of imipenem. Together with their LasB-inhibitory activity in the micromolar range, this class of compounds can now serve as a starting point for a multi-target inhibitor approach against both bacterial resistance and virulence, which is unprecedented in antibacterial drug discovery. Simultaneous inhibition of metallo-β-lactamases (MBLs) and virulence factors such as LasB from Pseudomonas aeruginosa offers a new approach to combat antibiotic-resistant pathogens.![]()
Collapse
Affiliation(s)
- Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8 1 66123 Saarbrücken Germany
| | - Katrin Voos
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8 1 66123 Saarbrücken Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt Paul-Ehrlich-Straße 40 60596 Frankfurt Germany
| | - Denia Frank
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt Paul-Ehrlich-Straße 40 60596 Frankfurt Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Marco Rotter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8 1 66123 Saarbrücken Germany .,Department of Pharmacy, Saarland University Campus Building E8 1 66123 Saarbrücken Germany
| |
Collapse
|
22
|
Tohar R, Ansbacher T, Sher I, Afriat-Jurnou L, Weinberg E, Gal M. Screening Collagenase Activity in Bacterial Lysate for Directed Enzyme Applications. Int J Mol Sci 2021; 22:ijms22168552. [PMID: 34445258 PMCID: PMC8395246 DOI: 10.3390/ijms22168552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023] Open
Abstract
Collagenases are essential enzymes capable of digesting triple-helical collagen under physiological conditions. These enzymes play a key role in diverse physiological and pathophysiological processes. Collagenases are used for diverse biotechnological applications, and it is thus of major interest to identify new enzyme variants with improved characteristics such as expression yield, stability, or activity. The engineering of new enzyme variants often relies on either rational protein design or directed enzyme evolution. The latter includes screening of a large randomized or semirational genetic library, both of which require an assay that enables the identification of improved variants. Moreover, the assay should be tailored for microplates to allow the screening of hundreds or thousands of clones. Herein, we repurposed the previously reported fluorogenic assay using 3,4-dihydroxyphenylacetic acid for the quantitation of collagen, and applied it in the detection of bacterial collagenase activity in bacterial lysates. This enabled the screening of hundreds of E. coli colonies expressing an error-prone library of collagenase G from C. histolyticum, in 96-well deep-well plates, by measuring activity directly in lysates with collagen. As a proof-of-concept, a single variant exhibiting higher activity than the starting-point enzyme was expressed, purified, and characterized biochemically and computationally. This showed the feasibility of this method to support medium-high throughput screening based on direct evaluation of collagenase activity.
Collapse
Affiliation(s)
- Ran Tohar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Tamar Ansbacher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
- Hadassah Academic College, 7 Hanevi’im Street, Jerusalem 9101001, Israel
| | - Inbal Sher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
- Correspondence: ; Tel.: +972-50-7987058
| |
Collapse
|
23
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
24
|
Voos K, Schönauer E, Alhayek A, Haupenthal J, Andreas A, Müller R, Hartmann RW, Brandstetter H, Hirsch AKH, Ducho C. Phosphonate as a Stable Zinc-Binding Group for "Pathoblocker" Inhibitors of Clostridial Collagenase H (ColH). ChemMedChem 2021; 16:1257-1267. [PMID: 33506625 PMCID: PMC8251769 DOI: 10.1002/cmdc.202000994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Microbial infections are a significant threat to public health, and resistance is on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyses tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.
Collapse
Affiliation(s)
- Katrin Voos
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Esther Schönauer
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Alaa Alhayek
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Jörg Haupenthal
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
| | - Anastasia Andreas
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf Müller
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Hans Brandstetter
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Anna K. H. Hirsch
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| |
Collapse
|
25
|
Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov Today 2021; 26:2108-2123. [PMID: 33676022 DOI: 10.1016/j.drudis.2021.02.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
Why is P. aeruginosa LasB elastase an attractive target for antivirulence therapy and what is the state-of-the art in LasB inhibitor design and development?
Collapse
|
26
|
An In Vitro Cell Culture Model for Pyoverdine-Mediated Virulence. Pathogens 2020; 10:pathogens10010009. [PMID: 33374230 PMCID: PMC7824568 DOI: 10.3390/pathogens10010009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.
Collapse
|
27
|
Konstantinović J, Yahiaoui S, Alhayek A, Haupenthal J, Schönauer E, Andreas A, Kany AM, Müller R, Koehnke J, Berger FK, Bischoff M, Hartmann RW, Brandstetter H, Hirsch AKH. N-Aryl-3-mercaptosuccinimides as Antivirulence Agents Targeting Pseudomonas aeruginosa Elastase and Clostridium Collagenases. J Med Chem 2020; 63:8359-8368. [PMID: 32470298 PMCID: PMC7429951 DOI: 10.1021/acs.jmedchem.0c00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
In light of the global
antimicrobial-resistance crisis, there is
an urgent need for novel bacterial targets and antibiotics with novel
modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant
role in the infection process and thereby represent promising antivirulence
targets. Here, we report novel N-aryl-3-mercaptosuccinimide
inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human
metalloproteases. Additionally, the inhibitors demonstrate no signs
of cytotoxicity against selected human cell lines and in a zebrafish
embryo toxicity model. Furthermore, the most active ColH inhibitor
shows a significant reduction of collagen degradation in an ex vivo pig-skin model.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Alaa Alhayek
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Anastasia Andreas
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Andreas M Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Fabian K Berger
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
28
|
Structural Requirements of N-alpha-Mercaptoacetyl Dipeptide (NAMdP) Inhibitors of Pseudomonas Aeruginosa Virulence Factor LasB: 3D-QSAR, Molecular Docking, and Interaction Fingerprint Studies. Int J Mol Sci 2019; 20:ijms20246133. [PMID: 31817391 PMCID: PMC6940830 DOI: 10.3390/ijms20246133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
The zinc metallopeptidase Pseudomonas elastase (LasB) is a virulence factor of Pseudomonas aeruginosa (P. aeruginosa), a pathogenic bacterium that can cause nosocomial infections. The present study relates the structural analysis of 118 N-alpha-mercaptoacetyl dipeptides (NAMdPs) as LasB inhibitors. Field-based 3D-QSAR and molecular docking methods were employed to describe the essential interactions between NAMdPs and LasB binding sites, and the chemical features that determine their differential activities. We report a predictive 3D-QSAR model that was developed according to the internal and external validation tests. The best model, including steric, electrostatic, hydrogen bond donor, hydrogen bond acceptor, and hydrophobic fields, was found to depict a three-dimensional map with the local positive and negative effects of these chemotypes on the LasB inhibitory activities. Furthermore, molecular docking experiments yielded bioactive conformations of NAMdPs inside the LasB binding site. The series of NAMdPs adopted a similar orientation with respect to phosphoramidon within the LasB binding site (crystallographic reference), where the backbone atoms of NAMdPs are hydrogen-bonded to the LasB residues N112, A113, and R198, similarly to phosphoramidon. Our study also included a deep description of the residues involved in the protein-ligand interaction patterns for the whole set of NAMdPs, through the use of interaction fingerprints (IFPs).
Collapse
|
29
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep 2019; 46:4049-4061. [PMID: 31093874 DOI: 10.1007/s11033-019-04855-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
Rapid and species-specific detection, and virulence evaluation of opportunistic pathogens such as Pseudomonas aeruginosa, are issues that increasingly has attracted the attention of public health authorities. A set of primers and hydrolysis probe was designed based on one of the P. aeruginosa housekeeping genes, gyrB, and its specificity and sensitivity was evaluated by TaqMan qPCR methods. The end point PCR and SYBR Green qPCR were used as control methods. Furthermore, multiplex RT-qPCRs were developed for gyrB as reference and four virulence genes, including lasB, lasR, rhlR and toxA. Totally, 40 environmental samples, two clinical isolates from CF patients, two standard strains of P. aeruginosa, and 15 non-target reference strains were used to test the sensitivity and specificity of qPCR assays. In silico and in vitro cross-species testing confirmed the high specificity and low cross-species amplification of the designed gyrB418F/gyrB490R/gyrB444P. The sensitivity of both TaqMan and SYBR Green qPCRs was 100% for all target P. aeruginosa, and the detected count of bacteria was below ten genomic equivalents. The lowest M value obtained from gene-stability measurement was 0.19 that confirmed the suitability of gyrB as the reference gene for RT-qPCR. The developed qPCRs have enough detection power for identification of P. aeruginosa in environmental samples including clean and recreational water, treated and untreated sewage and soil. The short amplicon length of our designed primers and probes, alongside with a low M value, make it as a proper methodology for RT-qPCR in virulence genes expression assessment.
Collapse
Affiliation(s)
- Abdolali Golpayegani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Vice-Chancellor for Health, Bam University of Medical Sciences, Bam, Iran.,Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran. .,Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box 14155-6446, Tehran, Iran.
| |
Collapse
|
31
|
Eisenhardt M, Schlupp P, Höfer F, Schmidts T, Hoffmann D, Czermak P, Pöppel AK, Vilcinskas A, Runkel F. The therapeutic potential of the insect metalloproteinase inhibitor against infections caused by Pseudomonas aeruginosa. J Pharm Pharmacol 2018; 71:316-328. [PMID: 30408181 DOI: 10.1111/jphp.13034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the therapeutic potential of the insect metalloproteinase inhibitor (IMPI) from Galleria mellonella, the only known specific inhibitor of M4 metalloproteinases. METHODS The fusion protein IMPI-GST (glutathione-S-transferase) was produced by fermentation in Escherichia coli and was tested for its ability to inhibit the proteolytic activity of the M4 metalloproteinases thermolysin and Pseudomonas elastase (PE), the latter a key virulence factor of the wound-associated and antibiotic-resistant pathogen Pseudomonas aeruginosa. We also tested the ability of IMPI to inhibit the secretome (Sec) of a P. aeruginosa strain obtained from a wound. KEY FINDINGS We found that IMPI-GST inhibited thermolysin and PE in vitro and increased the viability of human keratinocytes exposed to Sec by inhibiting detachment caused by changes in cytoskeletal morphology. IMPI-GST also improved the cell migration rate in an in vitro wound assay and reduced the severity of necrosis caused by Sec in an ex vivo porcine wound model. CONCLUSIONS The inhibition of virulence factors is a novel therapeutic approach against antibiotic resistant bacteria. Our results indicate that IMPI is a promising drug candidate for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Michaela Eisenhardt
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Peggy Schlupp
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Frank Höfer
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Thomas Schmidts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Daniel Hoffmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany.,Department of Bio-Resources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Anne-Kathrin Pöppel
- Department of Bio-Resources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bio-Resources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Giessen, Germany
| |
Collapse
|
32
|
Kany AM, Sikandar A, Yahiaoui S, Haupenthal J, Walter I, Empting M, Köhnke J, Hartmann RW. Tackling Pseudomonas aeruginosa Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chem Biol 2018; 13:2449-2455. [PMID: 30088919 DOI: 10.1021/acschembio.8b00257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In search of novel antibiotics to combat the challenging spread of resistant pathogens, bacterial proteases represent promising targets for pathoblocker development. A common motif for protease inhibitors is the hydroxamic acid function, yet this group has often been related to unspecific inhibition of various metalloproteases. In this work, the inhibition of LasB, a harmful zinc metalloprotease secreted by Pseudomonas aeruginosa, through a hydroxamate derivative is described. The present inhibitor was developed based on a recently reported, highly selective thiol scaffold. Using X-ray crystallography, the lack of inhibition of a range of human matrix metalloproteases could be attributed to a distinct binding mode sparing the S1' pocket. The inhibitor was shown to restore the effect of the antimicrobial peptide LL-37, decrease the formation of P. aeruginosa biofilm and, for the first time for a LasB inhibitor, reduce the release of extracellular DNA. Hence, it is capable of disrupting several important bacterial resistance mechanisms. These results highlight the potential of protease inhibitors to fight bacterial infections and point out the possibility to achieve selective inhibition even with a strong zinc anchor.
Collapse
Affiliation(s)
- Andreas M. Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabell Walter
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jesko Köhnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|