1
|
Wang Z, He L, Fan Z, Luo Y. Patenting perspective of modulators of ClpP endopeptidase: 2019-present. Expert Opin Ther Pat 2024; 34:1073-1084. [PMID: 39267345 DOI: 10.1080/13543776.2024.2404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION ClpP is a highly conserved serine protease that plays a crucial role in maintaining protein homeostasis in both bacterial cells and human mitochondria. Several studies have demonstrated the potential of ClpP as a drug target, with ClpP modulators, including both inhibitors and activators, showing promise in treating a range of conditions such as drug-resistant bacteria, malignant cancers, and fatty liver disease. AREA COVERED This review provides an overview of patents related to ClpP modulators filed over the last five years, detailing their claims and therapeutic applications. The sources of patent information included databases of the European Patent Office, the China Patent Office and the U.S.A. patent Office, while relevant research articles were accessed through PubMed. EXPERT OPINION The number of patents concerning ClpP modulators is on the rise, reflecting advancements in related research. By summarizing and outlining relevant patents, we aim to stimulate further interest among researchers, ultimately leading to the development of effective drugs based on ClpP modulators. The broad spectrum of diseases associated with ClpP dysfunction underscores the potential for ClpP modulators to address a wide range of therapeutic needs.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Liqing He
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Ziheng Fan
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wan T, Cao Y, Lai YJ, Pan Z, Li YZ, Zhuo L. Functional investigation of the two ClpPs and three ClpXs in Myxococcus xanthus DK1622. mSphere 2024; 9:e0036324. [PMID: 39189774 PMCID: PMC11423568 DOI: 10.1128/msphere.00363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
ClpXP is a protease complex that plays important roles in protein quality control and cell cycle regulation, but the functions of multiple ClpXs and multiple ClpPs in M. xanthus remain unknown. The genome of Myxococcus xanthus DK1622 contains two clpPs and three clpXs. The clpP1 and clpX1 genes are cotranscribed and are both essential, while the other copies are isolated in the genome and are deletable. The deletion of clpX2 caused the mutant to be deficient in fruiting body development, while the clpX3 gene is involved in resistance to thermal stress. Both ClpPs possess catalytic active sites, but only ClpP1 shows in vitro peptidase activity on the typical substrate Suc-LY-AMC. All of these clpP and clpX genes exhibit strong transcriptional upregulation in the stationary phase, and the transcription of the three clpX genes appears to be coordinated. Our results demonstrated that multiple ClpPs and multiple ClpXs are functionally divergent and may assist in the environmental adaptation and functional diversification of M. xanthus.IMPORTANCEClpXP is an important protease complex of bacteria and is involved in various physiological processes. Myxococcus xanthus DK1622 possesses two ClpPs and three ClpXs with unclear functions. We investigated the functions of these genes and demonstrated the essential roles of clpP1 and clpX1. Only ClpP1 has in vitro peptidase activity on Suc-LY-AMC, and the isolated clpX copies participate in distinct cellular processes. All of these genes exhibited significant transcriptional upregulation in the stationary phase. Divergent functions appear in multiple ClpPs and multiple ClpXs in M. xanthus DK1622.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| |
Collapse
|
3
|
Nerber HN, Baloh M, Brehm JN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. PLoS Pathog 2024; 20:e1012507. [PMID: 39213448 PMCID: PMC11392383 DOI: 10.1371/journal.ppat.1012507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.
Collapse
Affiliation(s)
- Hailee N Nerber
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Marko Baloh
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joshua N Brehm
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Nerber HN, Baloh M, Brehm JN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541253. [PMID: 37292792 PMCID: PMC10245694 DOI: 10.1101/2023.05.17.541253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.
Collapse
Affiliation(s)
- Hailee N. Nerber
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Marko Baloh
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845
| |
Collapse
|
5
|
Kumari S, Ali A, Kumar M. Nucleotide-induced ClpC oligomerization and its non-preferential association with ClpP isoforms of pathogenic Leptospira. Int J Biol Macromol 2024; 266:131371. [PMID: 38580013 DOI: 10.1016/j.ijbiomac.2024.131371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade β-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arfan Ali
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Assam 781022, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
6
|
Kumari S, Dhara A, Kumar M. Leptospira ClpP mutant variants in association with the ClpX, acyldepsipeptide, and the trigger factor displays unprecedented gain-of-function. Int J Biol Macromol 2024; 254:127753. [PMID: 38287595 DOI: 10.1016/j.ijbiomac.2023.127753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
The functionally active ClpP (LinClpP) of Leptospira interrogans is composed of two different isoforms (LinClpP1 and LinClpP2). In this study, five mutants of LinClpP (LinClpP1E170D, LinClpP1N172D, LinClpP2IG_del, LinClpP2S40AK41N, LinClpP2Y62A) targeting its critical hotspot residues were generated. The functional activity of pure LinClpP mutant variants or its heterocomplex and its effect when associated with a chaperone (LinClpX)/antibiotic acyldepsipeptide (ADEP1)/trigger factor (LinTF) was examined. The two mutants (LinClpP2S40AK41N and LinClpP2Y62A) displayed gain-of-function (GOF) in peptidase activity. The ADEP1-bound heterocomplex (LinClpP1P2S40AK41N and LinClpP1P2Y62A) measured 1.7 and 1.5-fold higher protease activity than ADEP-bound LinClpP1P2. The dynamic light scattering analysis of ADEP1-bound GOF mutants displayed increased hydrodynamic diameter. In the presence of LinTF, the heterocomplex (LinClpP1P2S40AK41N and LinClpP1P2Y62A) exhibited a 3-fold surge in peptidase activity. The deletion mutant (LinClpP2IG_del) or its heterocomplex (LinClpP1P2IG_del) displayed no activity. Similarly, the pure LinClpP1E170D and LinClpP1N172D could not cleave a model dipeptide. However, its heterocomplex (LinClpP1E170DP2 and LinClpP1N172DP2) showed 0.5-fold lower peptidase activity than the LinClpP1P2. Collectively, two mutants (LinClpP2S40AK41N and LinClpP2Y62A) have GOF and can degrade model dipeptide substrate without the aid of LinClpP1 isoform and thus provide new insights into unprecedented LinClpP activation.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anusua Dhara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Antibiotic Acyldepsipeptides Stimulate the Streptomyces Clp-ATPase/ClpP Complex for Accelerated Proteolysis. mBio 2022; 13:e0141322. [PMID: 36286522 PMCID: PMC9765437 DOI: 10.1128/mbio.01413-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clp proteases consist of a proteolytic, tetradecameric ClpP core and AAA+ Clp-ATPases. Streptomycetes, producers of a plethora of secondary metabolites, encode up to five different ClpP homologs, and the composition of their unusually complex Clp protease machinery has remained unsolved. Here, we report on the composition of the housekeeping Clp protease in Streptomyces, consisting of a heterotetradecameric core built of ClpP1, ClpP2, and the cognate Clp-ATPases ClpX, ClpC1, or ClpC2, all interacting with ClpP2 only. Antibiotic acyldepsipeptides (ADEP) dysregulate the Clp protease for unregulated proteolysis. We observed that ADEP binds Streptomyces ClpP1, but not ClpP2, thereby not only triggering the degradation of nonnative protein substrates but also accelerating Clp-ATPase-dependent proteolysis. The explanation is the concomitant binding of ADEP and Clp-ATPases to opposite sides of the ClpP1P2 barrel, hence revealing a third, so far unknown mechanism of ADEP action, i.e., the accelerated proteolysis of native protein substrates by the Clp protease. IMPORTANCE Clp proteases are antibiotic and anticancer drug targets. Composed of the proteolytic core ClpP and a regulatory Clp-ATPase, the protease machinery is important for protein homeostasis and regulatory proteolysis. The acyldepsipeptide antibiotic ADEP targets ClpP and has shown promise for treating multiresistant and persistent bacterial infections. The molecular mechanism of ADEP is multilayered. Here, we present a new way how ADEP can deregulate the Clp protease system. Clp-ATPases and ADEP bind to opposite sides of Streptomyces ClpP, accelerating the degradation of natural Clp protease substrates. We also demonstrate the composition of the major Streptomyces Clp protease complex, a heteromeric ClpP1P2 core with the Clp-ATPases ClpX, ClpC1, or ClpC2 exclusively bound to ClpP2, and the killing mechanism of ADEP in Streptomyces.
Collapse
|
8
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Identification of ClpP Dual Isoform Disruption as an Anti-sporulation Strategy for Clostridioides difficile. J Bacteriol 2021; 204:e0041121. [PMID: 34807726 DOI: 10.1128/jb.00411-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Clostridioides difficile is a primary cause of hospital-acquired diarrhea, threatening both immunocompromised and healthy individuals. An important aspect of defining mechanisms that drive C. difficile persistence and virulence relies on developing a more complete understanding of sporulation. C. difficile sporulation is the single determinant of transmission and complicates treatment and prevention due to the chemical and physical resilience of spores. By extension, the identification of druggable targets that significantly attenuate sporulation would have a significant impact on thwarting C. difficile infection. Using a new CRISPR-Cas9 nickase genome editing methodology, stop codons were inserted early in the coding sequence for clpP1 and clpP2 to generate C. difficile mutants that no longer produced the corresponding isoforms of caseinolytic protease P (ClpP). The data show that genetic ablation of ClpP isoforms leads to altered sporulation phenotypes with the clpP1/clpP2 double mutant exhibiting asporogenic behavior. A small screen of known ClpP inhibitors in a fluorescence-based biochemical assay identified bortezomib as an inhibitor of C. difficile ClpP that produces dose-dependent inhibition of purified ClpP. Incubation of C. difficile cultures in the presence of bortezomib reveals anti-sporulation effects approaching that observed in the clpP1/clpP2 double mutant. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small molecule ClpP inhibitors as C. difficile anti-sporulating agents. IMPORTANCE Due to diverse roles of ClpP and the reliance of pathogens upon this system for infection, it has emerged as a target for antimicrobial development. Biology regulated by ClpP is organism-dependent and has not been defined in C. difficile. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small molecule ClpP inhibitors as anti-sporulating agents. The identification of new approaches and/or drug targets that reduce C. difficile sporulation would be transformative and are expected to find high utility in prophylaxis, transmission attenuation, and relapse prevention. Discovery of the ClpP system as a major driver to sporulation also provides a new avenue of inquiry for advancing the understanding of sporulation.
Collapse
|
10
|
Zou L, Evans CR, Do VD, Losefsky QP, Ngo DQ, McGillivray SM. Loss of the ClpXP Protease Leads to Decreased Resistance to Cell-Envelope Targeting Antimicrobials in Bacillus anthracis Sterne. Front Microbiol 2021; 12:719548. [PMID: 34497598 PMCID: PMC8419472 DOI: 10.3389/fmicb.2021.719548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The ClpX ATPase is critical for resistance to cell envelope targeting antibiotics in Bacillus anthracis, however, it is unclear whether this is due to its function as an independent chaperone or as part of the ClpXP protease. In this study, we demonstrate that antibiotic resistance is due to formation of the ClpXP protease through construction of a ClpX complementation plasmid that is unable to interact with ClpP. Additionally, we genetically disrupted both clpP genes, clpP1 and clpP2, found in B. anthracis Sterne and find that the loss of either increases susceptibility to cell envelope targeting antimicrobials, although neither has as strong of a phenotype as loss of clpX and neither clpP gene is essential for virulence in a G. mellonella model of infection. Lastly, we looked at changes to cell envelope morphology that could contribute to increased antibiotic sensitivity. We find no difference in cell charge or cell lysis, although we do see increased hydrophobicity in the ΔclpX strain, decreased cellular density and slightly thinner cells walls. We also see significant cell division defects in ΔclpX, although only when cells are grown in the mammalian cell culture medium, RPMI. We conclude that the intrinsic resistance of B. anthracis to cell wall active antimicrobials is dependent on formation of the ClpXP protease and that this could be due, at least in part, to the role of ClpX in regulating cell envelope morphology.
Collapse
Affiliation(s)
- Lang Zou
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Christopher R Evans
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Vuong D Do
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Quinn P Losefsky
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Diem Q Ngo
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Shauna M McGillivray
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
11
|
Illigmann A, Thoma Y, Pan S, Reinhardt L, Brötz-Oesterhelt H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb Physiol 2021; 31:260-279. [PMID: 34438398 DOI: 10.1159/000517718] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
Fast adaptation to environmental changes ensures bacterial survival, and proteolysis represents a key cellular process in adaptation. The Clp protease system is a multi-component machinery responsible for protein homoeostasis, protein quality control, and targeted proteolysis of transcriptional regulators in prokaryotic cells and prokaryote-derived organelles of eukaryotic cells. A functional Clp protease complex consists of the tetradecameric proteolytic core ClpP and a hexameric ATP-consuming Clp-ATPase, several of which can associate with the same proteolytic core. Clp-ATPases confer substrate specificity by recognising specific degradation tags, and further selectivity is conferred by adaptor proteins, together allowing for a fine-tuned degradation process embedded in elaborate regulatory networks. This review focuses on the contribution of the Clp protease system to prokaryotic survival and summarises the current state of knowledge for exemplary bacteria in an increasing degree of interaction with eukaryotic cells. Starting from free-living bacteria as exemplified by a non-pathogenic and a pathogenic member of the Firmicutes, i.e., Bacillus subtilis and Staphylococcus aureus, respectively, we turn our attention to facultative and obligate intracellular bacterial pathogens, i.e., Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, and conclude with mitochondria. Under stress conditions, the Clp protease system exerts its pivotal role in the degradation of damaged proteins and controls the timing and extent of the heat-shock response by regulatory proteolysis. Key regulators of developmental programmes like natural competence, motility, and sporulation are also under Clp proteolytic control. In many pathogenic species, the Clp system is required for the expression of virulence factors and essential for colonising the host. In accordance with its evolutionary origin, the human mitochondrial Clp protease strongly resembles its bacterial counterparts, taking a central role in protein quality control and homoeostasis, energy metabolism, and apoptosis in eukaryotic cells, and several cancer cell types depend on it for proliferation.
Collapse
Affiliation(s)
- Astrid Illigmann
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Thoma
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefan Pan
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Laura Reinhardt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Brötz-Oesterhelt H, Vorbach A. Reprogramming of the Caseinolytic Protease by ADEP Antibiotics: Molecular Mechanism, Cellular Consequences, Therapeutic Potential. Front Mol Biosci 2021; 8:690902. [PMID: 34109219 PMCID: PMC8182300 DOI: 10.3389/fmolb.2021.690902] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rising antibiotic resistance urgently calls for the discovery and evaluation of novel antibiotic classes and unique antibiotic targets. The caseinolytic protease Clp emerged as an unprecedented target for antibiotic therapy 15 years ago when it was observed that natural product-derived acyldepsipeptide antibiotics (ADEP) dysregulated its proteolytic core ClpP towards destructive proteolysis in bacterial cells. A substantial database has accumulated since on the interaction of ADEP with ClpP, which is comprehensively compiled in this review. On the molecular level, we describe the conformational control that ADEP exerts over ClpP, the nature of the protein substrates degraded, and the emerging structure-activity-relationship of the ADEP compound class. On the physiological level, we review the multi-faceted antibacterial mechanism, species-dependent killing modes, the activity against carcinogenic cells, and the therapeutic potential of the compound class.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Andreas Vorbach
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
13
|
Kahne SC, Darwin KH. Structural determinants of regulated proteolysis in pathogenic bacteria by ClpP and the proteasome. Curr Opin Struct Biol 2021; 67:120-126. [PMID: 33221704 PMCID: PMC8096641 DOI: 10.1016/j.sbi.2020.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
Bacteria use gated proteolytic machines for routine protein quality control and regulated responses to environmental conditions. This review discusses recent advances in understanding the structure and regulation of ClpP proteases, nanomachines widely distributed across bacteria, and the bacterial proteasome, a protease found in relatively few species. For both machines, activators confer substrate specificity. We highlight new data from organisms encoding two ClpP isoforms and the central role of activators as platforms for integrating regulatory signals. Because proteolytic systems contribute to survival and virulence of many bacterial pathogens, understanding their forms and functions enables new approaches to design targeted therapeutics.
Collapse
Affiliation(s)
- Shoshanna C Kahne
- New York University Robert Grossman School of Medicine, Department of Microbiology, 430 E. 29th Street, Room 312, New York, NY 10016, USA
| | - K Heran Darwin
- New York University Robert Grossman School of Medicine, Department of Microbiology, 430 E. 29th Street, Room 312, New York, NY 10016, USA.
| |
Collapse
|
14
|
Choudhury M, Dhara A, Kumar M. Trigger Factor in Association with the ClpP1P2 Heterocomplex of Leptospira Promotes Protease/Peptidase Activity. ACS OMEGA 2021; 6:1400-1409. [PMID: 33490799 PMCID: PMC7818586 DOI: 10.1021/acsomega.0c05057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
The genomic analysis of Leptospira reveals a trigger factor (TF) encoding gene (tig) to be colocalized along with the clpP1 and clpX. The TF is a crouching dragon-like protein known to be a ribosome-associated chaperone that is involved in cotranslational protein folding in bacteria in an ATP-independent mode. In Leptospira, tig is localized upstream of the clpP1 with a short (4 bp) overlap. In the present study, we document the distinctive role of Leptospira TF (LinTF) in the caseinolytic protease (ClpP) system. The recombinant LinTF (rLinTF) was found to improve the peptidase or protease activity of the ClpP1P2 heterocomplex and ClpXP1P2 complex, respectively, on model substrates. In addition, on supplementation of rLinTF to rClpP1P2 bound to its physiological ATPase chaperone ClpX or the antibiotic analogue acyldepsipeptide (ADEP), an augmentation in the activity of ClpP1P2 was observed. These studies underscore the novel role of LinTF in aiding the caseinolytic protease activity of Leptospira. Supplementation of rLinTF to a peptidase assay of rClpP1P2 conditionally in the presence of a salt (sodium citrate) with high Hofmeister strength led us to speculate that rLinTF may have a role in the assembly of multimeric proteins. The deletion of one of the arms (arm-2) of the LinTF structure from the carboxy terminal domain indicated a reduction in its capacity to stimulate rClpP1P2 activity. Thus, the C-terminal domain of LinTF may have a role in the assembly of multimeric ClpP protein, leading to enhancement of ClpP activity.
Collapse
Affiliation(s)
| | | | - Manish Kumar
- . Phone: +91-361-258-2230. Fax: +91-361-258-2249
| |
Collapse
|
15
|
Acyldepsipeptide activated ClpP1P2 macromolecule of Leptospira, an ideal Achilles' heel to hamper the cell survival and deregulate ClpP proteolytic activity. Res Microbiol 2021; 172:103797. [PMID: 33460738 DOI: 10.1016/j.resmic.2021.103797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Antibiotic acyldepsipeptide (ADEP) targets the bacterial ClpP serine protease and can inhibit the growth of numerous bacterial species by activating/dysregulating the protease activity within the cell. The spirochete Leptospira interrogans harbors two ClpP isoforms (LepClpP1 and LepClpP2). Supplementation of ADEP in the Leptospira growth medium resulted in the inhibition of bacterial growth. The ADEP mediated activation of the LepClpP mixture was dependent on the time allowed for the self-assembly of LepClpP1 and LepClpP2. The dynamic light scattering of the LepClpP mixture in the presence of the ADEP indicated a conformational transformation of the LepClpP machinery. Serine 98, a catalytic triad residue of the LepClpP1 in the LepClpP1P2 heterocomplex, was critical for the ADEP mediated activation. The computational prototype of the LepClpP1P2 structure suggested that the hydrophobic pockets wherein the ADEPs or the physiological chaperone ClpX predominantly dock are exclusively present in the LepClpP2 heptamer. Using the ADEP as a tool, this investigation provides an insight into the molecular function of the LepClpP1P2 in a coalition with its ATPase chaperone LepClpX. The shreds of the evidence illustrated in this investigation verify that ADEP1 possesses the ability to control the LepClpP system in an unconventional approach than the other organisms.
Collapse
|
16
|
Nagpal J, Paxman JJ, Zammit JE, Thomas AA, Truscott KN, Heras B, Dougan DA. Molecular and structural insights into an asymmetric proteolytic complex (ClpP1P2) from Mycobacterium smegmatis. Sci Rep 2019; 9:18019. [PMID: 31792243 PMCID: PMC6889138 DOI: 10.1038/s41598-019-53736-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 11/09/2022] Open
Abstract
The ClpP protease is found in all kingdoms of life, from bacteria to humans. In general, this protease forms a homo-oligomeric complex composed of 14 identical subunits, which associates with its cognate ATPase in a symmetrical manner. Here we show that, in contrast to this general architecture, the Clp protease from Mycobacterium smegmatis (Msm) forms an asymmetric hetero-oligomeric complex ClpP1P2, which only associates with its cognate ATPase through the ClpP2 ring. Our structural and functional characterisation of this complex demonstrates that asymmetric docking of the ATPase component is controlled by both the composition of the ClpP1 hydrophobic pocket (Hp) and the presence of a unique C-terminal extension in ClpP1 that guards this Hp. Our structural analysis of MsmClpP1 also revealed openings in the side-walls of the inactive tetradecamer, which may represent sites for product egress.
Collapse
Affiliation(s)
- Jyotsna Nagpal
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Jessica E Zammit
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Adam A. Thomas
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Kaye N Truscott
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia.
| | - David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia.
| |
Collapse
|
17
|
Griffith EC, Zhao Y, Singh AP, Conlon BP, Tangallapally R, Shadrick WR, Liu J, Wallace MJ, Yang L, Elmore JM, Li Y, Zheng Z, Miller DJ, Cheramie MN, Lee RB, LaFleur MD, Lewis K, Lee RE. Ureadepsipeptides as ClpP Activators. ACS Infect Dis 2019; 5:1915-1925. [PMID: 31588734 DOI: 10.1021/acsinfecdis.9b00245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acyldepsipeptides are a unique class of antibiotics that act via allosterically dysregulated activation of the bacterial caseinolytic protease (ClpP). The ability of ClpP activators to kill nongrowing bacteria represents a new opportunity to combat deep-seated biofilm infections. However, the acyldepsipeptide scaffold is subject to rapid metabolism. Herein, we explore alteration of the potentially metabolically reactive α,β unsaturated acyl chain. Through targeted synthesis, a new class of phenyl urea substituted depsipeptide ClpP activators with improved metabolic stability is described. The ureadepsipeptides are potent activators of Staphylococcus aureus ClpP and show activity against Gram-positive bacteria, including S. aureus biofilms. These studies demonstrate that a phenyl urea motif can successfully mimic the double bond, maintaining potency equivalent to acyldepsipeptides but with decreased metabolic liability. Although removal of the double bond from acyldepsipeptides generally has a significant negative impact on potency, structural studies revealed that the phenyl ureadepsipeptides can retain potency through the formation of a third hydrogen bond between the urea and the key Tyr63 residue in the ClpP activation domain. Ureadepsipeptides represent a new class of ClpP activators with improved drug-like properties, potent antibacterial activity, and the tractability to be further optimized.
Collapse
Affiliation(s)
- Elizabeth C. Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Ying Zhao
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Aman P. Singh
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Brian P. Conlon
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - William R. Shadrick
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - John M. Elmore
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhong Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Darcie J. Miller
- Department of Structure Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Robin B. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Michael D. LaFleur
- Arietis Pharma, 650 Albany Street, Suite 114, Boston, Massachusetts 02118, United States
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
18
|
The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Sci Rep 2019; 9:14129. [PMID: 31575885 PMCID: PMC6773864 DOI: 10.1038/s41598-019-50505-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
Clp proteases play a central role in bacterial physiology and, for some bacterial species, are even essential for survival. Also due to their conservation among bacteria including important human pathogens, Clp proteases have recently attracted considerable attention as antibiotic targets. Here, we functionally reconstituted and characterized the ClpXP protease of Chlamydia trachomatis (ctClpXP), an obligate intracellular pathogen and the causative agent of widespread sexually transmitted diseases in humans. Our in vitro data show that ctClpXP is formed by a hetero-tetradecameric proteolytic core, composed of two distinct homologs of ClpP (ctClpP1 and ctClpP2), that associates with the unfoldase ctClpX via ctClpP2 for regulated protein degradation. Antibiotics of the ADEP class interfere with protease functions by both preventing the interaction of ctClpX with ctClpP1P2 and activating the otherwise dormant proteolytic core for unregulated proteolysis. Thus, our results reveal molecular insight into ctClpXP function, validating this protease as an antibacterial target.
Collapse
|
19
|
Dhara A, Hussain MS, Datta D, Kumar M. Insights to the Assembly of a Functionally Active Leptospiral ClpP1P2 Protease Complex along with Its ATPase Chaperone ClpX. ACS OMEGA 2019; 4:12880-12895. [PMID: 31460415 PMCID: PMC6682002 DOI: 10.1021/acsomega.9b00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
Leptospira interrogans genome is predicted to encode multiple isoforms of caseinolytic proteases (ClpP1 and ClpP2). The ClpP proteins with the aid of its ATPase chaperone are known to be involved in establishing cellular proteostasis and have emerged as a target for developing new antibiotics. We report the molecular characterization of recombinant ClpP1 (rClpP1) and rClpP2 of Leptospira along with its ATPase chaperone rClpX. The two isoforms of rClpPs when coupled together in an equivalent concentration exhibit optimum activity on small fluorogenic peptide substrates, whereas the pure rClpP isoforms are enzymatically inactive. Isothermal titration calorimetry analysis suggests that the two rClpP isoforms bind each other moderately in a 1:1 stoichiometry with a dissociation constant of 2.02 ± 0.1 μM at 37 °C and is thermodynamically favored. Size exclusion chromatography fractionates the majority of pure rClpP1 at ≥308 kDa (14-21-mer) and the pure rClpP2 at 308 kDa (tetradecamer), whereas the functionally active rClpP isoform mixture fractionates as a tetradecamer. The distinct and unprecedented oligomeric form of rClpP1 was also evident through native-gel and dynamic light scattering. Moreover, the rClpP isoform mixture formed after the site-directed mutation of either or both the isoforms at one of the catalytic triad residues (Ser 98/97 to Ala 98/97) resulted in the complete loss of protease activity. The rClpP isoform mixture gets stimulated to degrade the casein substrate in the presence of rClpX and in an energy-dependent manner. On the contrary, pure rClpP1 or the rClpP2 isoform in association with rClpX are incapable of forming operative protease. The reported finding suggests that in Leptospira, the enzymatic activity of the rClpP protease complex in the presence or absence of cochaperone is performed solely by the tetradecamer structure which is hypothesized to be composed of 2-stacked ClpP heptameric rings, wherein each ring is a homo-oligomer of ClpP1 and ClpP2 subunits. Understanding the activities and regulation principle of multi-isoforms of ClpP in pathogenic bacteria may aid in intervening disease outcomes particularly to the co-evolving antibiotic resistance strains.
Collapse
Affiliation(s)
| | | | | | - Manish Kumar
- E-mail: . Phone: +91-361-258-2230. Fax: +91-361-258-2249
| |
Collapse
|