1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
2
|
Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol 2022; 371:109675. [DOI: 10.1016/j.ijfoodmicro.2022.109675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
3
|
Yang J, Zhang G, Wang Z, Meng J, Wen H. Metabolic Study of Stable Isotope Labeled Indolinone Derivative in Hepatocyte Cell by UPLC/Q TOF MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1538-1544. [PMID: 34028260 DOI: 10.1021/jasms.1c00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aggregation process of α-synuclein (α-syn) is substantial in the pathogenesis of Parkinson's disease. Indolinone derivatives are inhibitors of α-syn aggregates and can be used as PET-based radiotracers for imaging α-syn fibrils. However, no investigations on the metabolism of indolinone derivatives have been reported until now. In the present research, a 13C and 15N isotope labeling strategy was developed to synthesize compound [13C2,15N]-(Z)-1-(4-aminobenzyl)-3-((E)-(3-phenyl)allylidene)indolin-2-one (M0'), which was then used in a study of metabolism in hepatocytes. The metabolites were characterized using accurate mass and characteristic ion measurements. In the metabolic system, compound M0' was the main component (accounting for 97.5% of compound-related components) after incubation in hepatocytes for 3 h, which indicated that compound M0' possessed great metabolic stability. Seven metabolites have been successfully verified by UPLC/Q TOF MS in metabolic studies, including hydroxyl M0' (M1'), hydroxyl and methylated M0' (M2'), N-acetylated M0' (M3'), sulfate of hydroxyl M0' (M4'), the glucose conjugate of M0' (M5'), glucuronide conjugate of M0' (M6'), and glucuronide conjugate of hydroxyl M0' (M7'). The study on metabolism provides the important information to develop effective α-syn aggregate inhibitors and new PET-tracer-related indolinone derivatives.
Collapse
Affiliation(s)
- Jixia Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, Beijing 102488, P.R. China
| | - Gongzheng Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, Beijing 102488, P.R. China
| | - Zhaoyang Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, Beijing 102488, P.R. China
| | - Jian Meng
- Shanghai Institute of Materia Medica Chinese Academy of Sciences, 501 Haike Road, PuDong District, Shanghai 201203, P.R. China
| | - Hongliang Wen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, Beijing 102488, P.R. China
| |
Collapse
|
4
|
Lima C, Muhamadali H, Xu Y, Kansiz M, Goodacre R. Imaging Isotopically Labeled Bacteria at the Single-Cell Level Using High-Resolution Optical Infrared Photothermal Spectroscopy. Anal Chem 2021; 93:3082-3088. [PMID: 33522799 DOI: 10.1021/acs.analchem.0c03967] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report that the cellular uptake of stable isotope-labeled compounds by bacteria can be probed at the single-cell level using infrared spectroscopy, and this monitors the chemical vibrations affected by the incorporation of "heavy" atoms by cells and thus can be used to understand microbial systems. This presents a significant advancement as most studies have focused on evaluating communities of cells due to the poor spatial resolution achieved by classical infrared microspectrometers, and to date, there is no study evaluating the incorporation of labeled compounds by bacteria at single-cell levels using infrared spectroscopy. The development of new technologies and instrumentations that provide information on the metabolic activity of a single bacterium is critical as this will allow for a better understanding of the interactions between microorganisms as well as the function of individual members and their interactions in different microbial communities. Thus, the present study demonstrates the ability of a novel far-field infrared imaging technique, optical photothermal infrared (O-PTIR) spectroscopy, as a tool to monitor the uptake of 13C-glucose and 15N-ammonium chloride by Escherichia coli bacteria at single-cell levels using spectral signatures recorded via single-point and imaging modes. An additional novelty is that imaging was achieved using six vibrational bands in the amide I and II regions, which were analyzed with chemometrics by employing partial least squares-discriminant analysis to predict 13C/12C and 15N/14N simultaneously.
Collapse
Affiliation(s)
- Cassio Lima
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Yun Xu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93101, United States
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
5
|
Wang D, He P, Wang Z, Li G, Majed N, Gu AZ. Advances in single cell Raman spectroscopy technologies for biological and environmental applications. Curr Opin Biotechnol 2020; 64:218-229. [PMID: 32688195 DOI: 10.1016/j.copbio.2020.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/29/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The increasing sophistication of single cell Raman spectroscopy (SCRS) via its integrations with other advanced analytical techniques and modern data analytics, enable unprecedented exploration of complex biological and environmental samples with significantly improved specificity, sensitivity, and resolution. Because of the merits of being high-resolution, label-free, non-invasive, molecular-specific, culture-independent, and suitable for in situ, in vitro or in vivo analysis, the SCRS-derived techniques offer abilities superior to conventional bulk measurements for environmental and biological studies. Here, we provide a comprehensive and critical review of the most recent advances in the development and application of SCRS-enabled technologies, with focus on those biomolecular and cellular high-resolution applications in environmental and biological fields. The basic principles, unique advantages, and suitable applications, as well as recognized limitations for each technology are recapitulated. The remaining challenges, research needs and future outlook are discussed. We predict that SCRS-enabled technologies are earning its place as a routine and powerful tool in many and rapidly expanding applications across disciplines.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Zijian Wang
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, 74/A, Green Road, Dhaka 1215, Bangladesh
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
6
|
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020; 16:e1008342. [PMID: 32365117 PMCID: PMC7224574 DOI: 10.1371/journal.ppat.1008342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Katherine H. Richardson
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paula Corsini
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard C. White
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosie Shaw
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Theo J. Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Benjamin Dorgan
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zeinab S. Zanjani
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|