1
|
Luo Z, Qiu H, Peng X, Tan Q, Chen B, Gu Q, Liu H, Zhou H. Development of potent inhibitors targeting bacterial prolyl-tRNA synthetase through fluorine scanning-directed activity tuning. Eur J Med Chem 2025; 291:117647. [PMID: 40253792 DOI: 10.1016/j.ejmech.2025.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
As essential enzymes encoded by single genes, aminoacyl-tRNA synthetases (aaRSs) have long been considered promising drug targets for combating microbial infections. In this study, we developed a novel class of amino acid-ATP dual-site inhibitors of prolyl-tRNA synthetase (ProRS) through the structural simplification of the intermediate product prolyl adenylate and its non-hydrolyzable mimic. The co-crystal structures of the compound PAA-5 bound to both Pseudomonas aeruginosa and human cytoplasmic ProRSs (PaProRS and HsPrors) were solved to high resolution. Utilizing the structural information gained, a fluorine scanning (F-scanning) strategy was applied to PAA-5, and the biochemical and biophysical assays demonstrated that fluorine substitutions at specific positions of PAA-5 selectively enhanced its activity against bacterial ProRS. The dual-fluorinated derivative PAA-38 exhibited the highest antibacterial potency, with a Kd value of 0.399 ± 0.074 nM and an IC50 value of 4.97 ± 0.98 nM against PaProRS and an MIC value of 4-8 μg mL-1 against tested bacterial strains. Our study provides a novel lead compound for the development of aaRS-based antibiotics and highlights F-scanning as a powerful strategy for lead optimization, particularly in pinpointing the subtle fluorophilic environments within the protein pocket to achieve better activity and selectivity.
Collapse
Affiliation(s)
- Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haipeng Qiu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoying Peng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Tan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongwei Liu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, China.
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Xie SC, Wang Y, Morton CJ, Metcalfe RD, Dogovski C, Pasaje CFA, Dunn E, Luth MR, Kumpornsin K, Istvan ES, Park JS, Fairhurst KJ, Ketprasit N, Yeo T, Yildirim O, Bhebhe MN, Klug DM, Rutledge PJ, Godoy LC, Dey S, De Souza ML, Siqueira-Neto JL, Du Y, Puhalovich T, Amini M, Shami G, Loesbanluechai D, Nie S, Williamson N, Jana GP, Maity BC, Thomson P, Foley T, Tan DS, Niles JC, Han BW, Goldberg DE, Burrows J, Fidock DA, Lee MCS, Winzeler EA, Griffin MDW, Todd MH, Tilley L. Reaction hijacking inhibition of Plasmodium falciparum asparagine tRNA synthetase. Nat Commun 2024; 15:937. [PMID: 38297033 PMCID: PMC10831071 DOI: 10.1038/s41467-024-45224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yinuo Wang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Craig J Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, VIC, Australia
| | - Riley D Metcalfe
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elyse Dunn
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Krittikorn Kumpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Calibr, Division of the Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kate J Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nutpakal Ketprasit
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Dana M Klug
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Peter J Rutledge
- School of Chemistry, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Luiz C Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mariana Laureano De Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jair L Siqueira-Neto
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tanya Puhalovich
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mona Amini
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gerry Shami
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gouranga P Jana
- TCG Lifesciences Private Limited, Salt-Lake Electronics Complex, Kolkata, India
| | - Bikash C Maity
- TCG Lifesciences Private Limited, Salt-Lake Electronics Complex, Kolkata, India
| | - Patrick Thomson
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | - Thomas Foley
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy Burrows
- Medicines for Malaria Venture, 20, Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 4HN, UK
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Matthew H Todd
- School of Pharmacy, University College London, London, WC1N 1AX, UK.
- Structural Genomics Consortium, University College London, London, WC1N 1AX, UK.
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Tye MA, Payne NC, Johansson C, Singh K, Santos SA, Fagbami L, Pant A, Sylvester K, Luth MR, Marques S, Whitman M, Mota MM, Winzeler EA, Lukens AK, Derbyshire ER, Oppermann U, Wirth DF, Mazitschek R. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun 2022; 13:4976. [PMID: 36008486 PMCID: PMC9403976 DOI: 10.1038/s41467-022-32630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.
Collapse
Affiliation(s)
- Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Catrine Johansson
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sofia A Santos
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lọla Fagbami
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akansha Pant
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|