1
|
Sibai RE, Farahat ZEM, Qasem HH, Hassan H. The power of DNA-encoded chemical libraries in the battle against drug-resistant bacteria. RSC Adv 2025; 15:14001-14029. [PMID: 40309121 PMCID: PMC12042081 DOI: 10.1039/d5ra00016e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Drug-resistant bacteria are increasingly posing an imminent existential threat, as many bacteria have developed resistance mechanisms that render most antibiotics ineffective. In the meantime, the number of newly approved antibiotics or new clinical antibacterial drug candidates is sharply declining. A key challenge is finding effective pharmacophores that can penetrate and accumulate inside bacterial cells. DNA-encoded chemical libraries (DECLs) play vital roles in accelerating hit identification and screening against various bacterial protein targets. In this review, we highlight the pivotal role of DECLs in accelerating the identification of new pharmacophores and hit compounds against drug-resistant bacteria. This review focuses on the protein targets, where DECLs have directly contributed to the rapid identification of new inhibitors. In addition, this review explores the methods used to screen DECLs against various bacterial targets and discusses the current outlook and perspectives on the role of DECLs in tackling antimicrobial resistance.
Collapse
Affiliation(s)
- Riyad E Sibai
- Department of Microbiology and Biochemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Zainab E M Farahat
- Department of Biochemistry, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hasnaa H Qasem
- Department of Zoology, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | - Haitham Hassan
- Chemistry Department, School of Life Sciences, University of Sussex Falmer, Brighton East Sussex BN1 9QJ UK
| |
Collapse
|
2
|
Boi S, Puxeddu S, Delogu I, Farci D, Piano D, Manzin A, Ceccarelli M, Angius F, Scorciapino MA, Milenkovic S. Seeking Correlation Among Porin Permeabilities and Minimum Inhibitory Concentrations Through Machine Learning: A Promising Route to the Essential Molecular Descriptors. Molecules 2025; 30:1224. [PMID: 40142001 PMCID: PMC11944608 DOI: 10.3390/molecules30061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Developing effective antibiotics against Gram-negative bacteria remains challenging due to their protective outer membrane. With this study, we investigated the relationship between antibiotic permeation through the OmpF porin of Escherichia coli and antimicrobial efficacy. We measured the relative permeability coefficients (RPCs) through the bacterial porin by liposome swelling assays, including non-antibacterial molecules, and the minimum inhibitory concentrations (MICs) against E. coli. We developed a machine learning (ML) approach by combining classification and regression models to correlate these data sets. Our strategy allowed us to quantify the negative correlation between RPC and MIC values, clearly indicating that increased permeability through OmpF generally leads to improved antimicrobial activity. Moreover, the correlation was remarkable only for compounds with significant permeability coefficients. Conversely, when permeation ability is low, other factors play the most significant role in antimicrobial potency. Importantly, the proposed ML-based approach was set by exploiting the available seminal information from previous investigations in order to keep the number of molecular descriptors to the minimum for greater interpretability. This provided valuable insights into the complex interplay between different molecular properties in defining the overall outer membrane permeation and, consequently, the antimicrobial efficacy. From a practical perspective, the presented approach does not aim at identifying the "golden rule" for boosting antibiotic potency. The automated protocol presented here could be used to inspect, in silico, many alternatives of a given molecular structure, with the output being the list of the best candidates to be then synthesized and tested. This could be a valuable in silico tool for researchers in both academia and industry to rapidly evaluate novel potential compounds and reduce costs and time during the early drug discovery stage.
Collapse
Affiliation(s)
- Sara Boi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy;
| | - Silvia Puxeddu
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Ilenia Delogu
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Domenica Farci
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (D.F.); (D.P.)
| | - Dario Piano
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (D.F.); (D.P.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (M.C.); (S.M.)
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy;
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (M.C.); (S.M.)
| |
Collapse
|
3
|
Vergalli J, Réfrégiers M, Ruggerone P, Winterhalter M, Pagès JM. Advances in methods and concepts provide new insight into antibiotic fluxes across the bacterial membrane. Commun Biol 2024; 7:1508. [PMID: 39543341 PMCID: PMC11564671 DOI: 10.1038/s42003-024-07168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
The sophisticated envelope of Gram-negative bacteria modulates the uptake of small molecules in a side-chain-sensitive manner. Despite intensive theoretical and experimental investigations, a general set of pathways underpinning antibiotic uptake has not been identified. This manuscript discusses the passive influx versus active efflux of antibiotics, considering the responsible membrane proteins and the transported molecules. Recent methods have analyzed drug transport across the bacterial membrane in order to understand their activity. The combination of in vitro, in cellulo and in silico methods shed light on the key, mainly electrostatic, interactions between the molecule surface, porins and transporters during permeation. A key factor is the relationship between the dose of an active compound near its target and its antibacterial activity during the critical early window. Today, methodology breakthroughs provide fruitful tools to precisely dissect drug transport, identify key steps in drug resistance associated with membrane impermeability and efflux, and highlight key parameters to generate more effective drugs.
Collapse
Affiliation(s)
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Constructor University, 28719, Bremen, Germany
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | |
Collapse
|
4
|
Milenkovic S, Boi S, Scorciapino MA, Bodrenko IV, Ceccarelli M. Machine Learning Prediction of Small Molecule Accumulation in Escherichia Coli Enhanced with Descriptor Statistics. J Chem Theory Comput 2024. [PMID: 38978185 DOI: 10.1021/acs.jctc.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibiotic resistance, particularly among Gram-negative bacteria, poses a significant healthcare challenge due to their ability to evade antibiotic action through various mechanisms. In this study, we explore the prediction of small molecule accumulation in Gram-negative bacteria by using machine learning techniques enhanced with statistical descriptors derived from molecular dynamics simulations. We begin by identifying a minimal set of molecular descriptors that maximize the model's predictive power while preserving human interpretability. We optimize model accuracy, precision, and the area under the receiver operating characteristic curve through an iterative process. We demonstrate that the inclusion of statistical descriptors significantly improves model performance across various prediction metrics. Particularly, the addition of statistical descriptors related to dipole moment and minimum projection radius enhances the model's predictive capabilities, shedding light on the physicochemical properties crucial for small molecule accumulation. Our findings highlight the importance of considering statistical moments beyond mean values in predictive modeling and suggest avenues for future research. Overall, our study provides insights into the complex dynamics of antibiotic accumulation in Escherichia coli bacterial cells, generalizable to other Gram-negative species, offering a promising approach for the discovery of effective antibacterial agents, identifying new hits, and improving them to define effective lead agents.
Collapse
Affiliation(s)
- Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy
| | - Sara Boi
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy
| | | | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy
| |
Collapse
|
5
|
Satheesan R, Vikraman D, Jayan P, Vijayan V, Chimerel C, Mahendran KR. Sensing PEGylated Peptide Conformations Using a Protein Nanopore. NANO LETTERS 2024; 24:3566-3574. [PMID: 38316144 DOI: 10.1021/acs.nanolett.3c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.
Collapse
Affiliation(s)
- Remya Satheesan
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Devika Vikraman
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Parvathy Jayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Catalin Chimerel
- Automation Department, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Brasov 500036, Romania
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
6
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
8
|
Silale A, Zhu Y, Witwinowski J, Smith RE, Newman KE, Bhamidimarri SP, Baslé A, Khalid S, Beloin C, Gribaldo S, van den Berg B. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Nat Commun 2023; 14:7152. [PMID: 37932269 PMCID: PMC10628300 DOI: 10.1038/s41467-023-42601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy. We also characterised the channel properties of the transmembrane β-barrel of OmpM and investigated the structure and PG-binding properties of its periplasmic stalk region. Our results show that OM tethering and nutrient acquisition are genetically linked in V. parvula, and probably other diderm Terrabacteria. This dual function of OmpM may have played a role in the loss of the OM in ancestral bacteria and the emergence of monoderm bacterial lineages.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Yiling Zhu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Jerzy Witwinowski
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Robert E Smith
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Satya P Bhamidimarri
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Bert van den Berg
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Acharya A, Ghai I, Piselli C, Prajapati JD, Benz R, Winterhalter M, Kleinekathöfer U. Conformational Dynamics of Loop L3 in OmpF: Implications toward Antibiotic Translocation and Voltage Gating. J Chem Inf Model 2023; 63:910-927. [PMID: 36525563 DOI: 10.1021/acs.jcim.2c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, we delineate the molecular mechanism of a bulky antibiotic permeating through a bacterial channel and uncover the role of conformational dynamics of the constriction loop in this process. Using the temperature accelerated sliced sampling approach, we shed light onto the dynamics of the L3 loop, in particular the F118 to S125 segment, at the constriction regions of the OmpF porin. We complement the findings with single channel electrophysiology experiments and applied-field simulations, and we demonstrate the role of hydrogen-bond stabilization in the conformational dynamics of the L3 loop. A molecular mechanism of permeation is put forward wherein charged antibiotics perturb the network of stabilizing hydrogen-bond interactions and induce conformational changes in the L3 segment, thereby aiding the accommodation and permeation of bulky antibiotic molecules across the constriction region. We complement the findings with single channel electrophysiology experiments and demonstrate the importance of the hydrogen-bond stabilization in the conformational dynamics of the L3 loop. The generality of the present observations and experimental results regarding the L3 dynamics enables us to identify this L3 segment as the source of gating. We propose a mechanism of OmpF gating that is in agreement with previous experimental data that showed the noninfluence of cysteine double mutants that tethered the L3 tip to the barrel wall on the OmpF gating behavior. The presence of similar loop stabilization networks in porins of other clinically relevant pathogens suggests that the conformational dynamics of the constriction loop is possibly of general importance in the context of antibiotic permeation through porins.
Collapse
Affiliation(s)
- Abhishek Acharya
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen 28759, Germany
| | - Ishan Ghai
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | | | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
10
|
Tuveri GM, Ceccarelli M, Pira A, Bodrenko IV. The Optimal Permeation of Cyclic Boronates to Cross the Outer Membrane via the Porin Pathway. Antibiotics (Basel) 2022; 11:antibiotics11070840. [PMID: 35884094 PMCID: PMC9311757 DOI: 10.3390/antibiotics11070840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.
Collapse
Affiliation(s)
- Gian Marco Tuveri
- Molecular Bionics, Institute for Bioengineering of Catalonia, Carrer de Baldiri Reixac, 10, 12, 08028 Barcelona, Spain;
| | - Matteo Ceccarelli
- Dipartimento di Fisica, University of Cagliari, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy;
- Centro Nazionale di Ricerca/Istituto Officina dei Materiali (CNR/IOM), Sezione di Cagliari, c/o Dipartimento di Fisica, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy
| | - Alessandro Pira
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy;
| | - Igor V. Bodrenko
- Centro Nazionale di Ricerca/Istituto Officina dei Materiali (CNR/IOM), Sezione di Cagliari, c/o Dipartimento di Fisica, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759-DE Bremen, Germany
- Correspondence:
| |
Collapse
|
11
|
Acharya A, Prajapati JD, Kleinekathöfer U. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. J Phys Chem B 2022; 126:3995-4008. [PMID: 35616602 DOI: 10.1021/acs.jpcb.2c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nanopores have been at the focus of numerous studies due to their role in many biological processes as well as their (prospective) technological applications. Among many other topics, recent studies on nanopores have addressed two key areas: antibiotic permeation through bacterial channels and sensing of analytes. Although the two areas are quite far apart in terms of their objectives, in both cases atomistic simulations attempt to understand the solute dynamics and the solute-protein interactions within the channel lumen. While decades of studies on various channels have culminated in an improved understanding of the key molecular factors and led to practical applications in some cases, successful utilization is limited. In this Perspective we summarize recent progress in understanding key issues in molecular simulations of antibiotic translocation and in the development of nanopore sensors. Moreover, we comment on possible advancements in computational algorithms that can potentially resolve some of the issues.
Collapse
Affiliation(s)
- Abhishek Acharya
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
12
|
Pandeya A, Yang L, Alegun O, Karunasena C, Risko C, Li Z, Wei Y. Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria. PLoS One 2021; 16:e0260023. [PMID: 34767592 PMCID: PMC8589159 DOI: 10.1371/journal.pone.0260023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is a major public health concern. The shrinking selection of effective antibiotics and lack of new development is making the situation worse. Gram-negative bacteria more specifically pose serious threat because of their double layered cell envelope and effective efflux systems, which is a challenge for drugs to penetrate. One promising approach to breach this barrier is the "Trojan horse strategy". In this technique, an antibiotic molecule is conjugated with a nutrient molecule that helps the antibiotic to enter the cell through dedicated transporters for the nutrient. Here, we explored the approach using biotin conjugation with a florescent molecule Atto565 to determine if biotinylation enhances accumulation. Biotin is an essential vitamin for bacteria and is obtained through either synthesis or uptake from the environment. We found that biotinylation enhanced accumulation of Atto565 in E. coli. However, the enhancement did not seem to be due to uptake through biotin transporters since the presence of free biotin had no observable impact on accumulation. Accumulated compound was mostly in the periplasm, as determined by cell fractionation studies. This was further confirmed through the observation that expression of streptavidin in the periplasm specifically enhanced the accumulation of biotinylated Atto565. This enhancement was not observed when streptavidin was expressed in the cytoplasm indicating no significant distribution of the compound inside the cytoplasm. Using gene knockout strains, plasmid complementation and mutagenesis studies we demonstrated that biotinylation made the compound a better passenger through OmpC, an outer membrane porin. Density functional theory (DFT)-based evaluation of the three-dimensional geometries showed that biotinylation did not directly stabilize the conformation of the compound to make it favorable for the entry through a pore. Further studies including molecular dynamics simulations are necessary to determine the possible mechanisms of enhanced accumulation of the biotinylated Atto565.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Olaniyi Alegun
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Chamikara Karunasena
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
- Centre for Applied Energy and Research, University of Kentucky, Lexington, KY, United States of America
| | - Chad Risko
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
- Centre for Applied Energy and Research, University of Kentucky, Lexington, KY, United States of America
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
13
|
Ryan MD, Parkes AL, Corbett D, Dickie AP, Southey M, Andersen OA, Stein DB, Barbeau OR, Sanzone A, Thommes P, Barker J, Cain R, Compper C, Dejob M, Dorali A, Etheridge D, Evans S, Faulkner A, Gadouleau E, Gorman T, Haase D, Holbrow-Wilshaw M, Krulle T, Li X, Lumley C, Mertins B, Napier S, Odedra R, Papadopoulos K, Roumpelakis V, Spear K, Trimby E, Williams J, Zahn M, Keefe AD, Zhang Y, Soutter HT, Centrella PA, Clark MA, Cuozzo JW, Dumelin CE, Deng B, Hunt A, Sigel EA, Troast DM, DeJonge BLM. Discovery of Novel UDP- N-Acetylglucosamine Acyltransferase (LpxA) Inhibitors with Activity against Pseudomonas aeruginosa. J Med Chem 2021; 64:14377-14425. [PMID: 34569791 DOI: 10.1021/acs.jmedchem.1c00888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 μg/mL). Lack of activity against E. coli was maintained (IC50 > 20 μM and MIC > 128 μg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.
Collapse
Affiliation(s)
- M Dominic Ryan
- X-Biotix Therapeutics, 465 Waverly Oaks Road, Waltham, Massachusetts 02452, United States
| | - Alastair L Parkes
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - David Corbett
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Anthony P Dickie
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Michelle Southey
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Ole A Andersen
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Daniel B Stein
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Olivier R Barbeau
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Angelo Sanzone
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Pia Thommes
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - John Barker
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Ricky Cain
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Christel Compper
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Magali Dejob
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Alain Dorali
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Donnya Etheridge
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Sian Evans
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Adele Faulkner
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Elise Gadouleau
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Timothy Gorman
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Denes Haase
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | | | - Thomas Krulle
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Xianfu Li
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Christopher Lumley
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Barbara Mertins
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Spencer Napier
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Rajesh Odedra
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Kostas Papadopoulos
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | | | - Kate Spear
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Emily Trimby
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Jennifer Williams
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Michael Zahn
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Anthony D Keefe
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Holly T Soutter
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Paolo A Centrella
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Matthew A Clark
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W Cuozzo
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Boer Deng
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Avery Hunt
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Eric A Sigel
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Dawn M Troast
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Boudewijn L M DeJonge
- X-Biotix Therapeutics, 465 Waverly Oaks Road, Waltham, Massachusetts 02452, United States
| |
Collapse
|
14
|
The Influence of Permeability through Bacterial Porins in Whole-Cell Compound Accumulation. Antibiotics (Basel) 2021; 10:antibiotics10060635. [PMID: 34073313 PMCID: PMC8226570 DOI: 10.3390/antibiotics10060635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to their targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (74%) between the two, confirming porins key in compound uptake in Gram-negative bacteria. The analysis of this unique dataset aids to better understand the molecular descriptors behind whole-cell accumulation and molecular uptake in Gram-negative bacteria.
Collapse
|
15
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
16
|
Ropponen HK, Diamanti E, Siemens A, Illarionov B, Haupenthal J, Fischer M, Rottmann M, Witschel M, Hirsch AKH. Assessment of the rules related to gaining activity against Gram-negative bacteria. RSC Med Chem 2021; 12:593-601. [PMID: 34046630 PMCID: PMC8128065 DOI: 10.1039/d0md00409j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/30/2021] [Indexed: 11/21/2022] Open
Abstract
In the search for new antibacterial compounds, we repositioned an antimalarial compound class by derivatising it based on the so-called "eNTRy" rules for enhanced accumulation into Gram-negative bacteria. We designed, synthesised and evaluated a small library of amino acid modified compounds together with the respective Boc-protected analogues, leading to no substantial improvement in antibacterial activity against Escherichia coli wild-type K12, whereas more distinct activity differences were observed in E. coli mutant strains ΔtolC, D22, ΔacrB and BL21(DE3)omp8. A comparison of the activity results of the E. coli mutants with respect to the known rules related to enhanced activity against Gram-negative bacteria revealed that applicability of the rules is not always ensured. Out of the four amino acids used in this study, glycine derivatives showed highest antibacterial activity, although still suffering from efflux issues.
Collapse
Affiliation(s)
- Henni-Karoliina Ropponen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Alexandra Siemens
- Hamburg School of Food Science, University of Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Boris Illarionov
- Hamburg School of Food Science, University of Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Markus Fischer
- Hamburg School of Food Science, University of Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute Socinstrasse 57 4002 Basel Switzerland
- Universität Basel Petersplatz 1 4003 Basel Switzerland
| | | | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
17
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
18
|
Pira A, Scorciapino MA, Bodrenko IV, Bosin A, Acosta-Gutiérrez S, Ceccarelli M. Permeation of β-Lactamase Inhibitors through the General Porins of Gram-Negative Bacteria. Molecules 2020; 25:E5747. [PMID: 33291474 PMCID: PMC7730927 DOI: 10.3390/molecules25235747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Modern medicine relies upon antibiotics, but we have arrived to the point where our inability to come up with new effective molecules against resistant pathogens, together with the declining private investment, is resulting in the number of untreatable infections increasing worldwide at worrying pace. Among other pathogens, widely recognized institutions have indicated Gram-negative bacteria as particularly challenging, due to the presence of the outer membrane. The very first step in the action of every antibiotic or adjuvant is the permeation through this membrane, with small hydrophilic drugs usually crossing through protein channels. Thus, a detailed understanding of their properties at a molecular level is crucial. By making use of Molecular Dynamics simulations, we compared the two main porins of four members of the Enterobacteriaceae family, and, in this paper, we show their shared geometrical and electrostatic characteristics. Then, we used metadynamics simulations to reconstruct the free energy for permeation of selected diazobicyclooctans through OmpF. We demonstrate how porins features are coupled to those of the translocating species, modulating their passive permeation. In particular, we show that the minimal projection area of a molecule is a better descriptor than its molecular mass or the volume. Together with the magnitude and orientation of the electric dipole moment, these are the crucial parameters to gain an efficient compensation between the entropic and enthalpic contributions to the free energy barrier required for permeation. Our results confirm the possibility to predict the permeability of molecules through porins by using a few molecular parameters and bolster the general model according to which the free energy increase is mostly due to the decrease of conformational entropy, and this can be compensated by a favorable alignment of the electric dipole with respect to the channel intrinsic electric field.
Collapse
Affiliation(s)
- Alessandro Pira
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy;
| | - Igor V. Bodrenko
- CNR/IOM Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
| | | | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
- CNR/IOM Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| |
Collapse
|
19
|
Winterhalter M. Antibiotic uptake through porins located in the outer membrane of Gram-negative bacteria. Expert Opin Drug Deliv 2020; 18:449-457. [PMID: 33161750 DOI: 10.1080/17425247.2021.1847080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Making selective inhibitors of novel Gram-negative targets is not a substantial challenge - getting them into Gram-negative bacteria to reach their lethal target is the bottleneck. Poor permeability of the antibiotic requires high concentration causing off target activity. The lack of simple experimental techniques to measure antibiotic uptake as well as the local concentration at the target site creates a particular bottleneck in understanding and in improving the antibiotic activity.Areas covered: Here we recall current approaches to quantify the uptake. For a few antibiotics with known evidence for channel-limited permeation, the flux across a single OmpF or OmpC channel has been measured. For a typical concentration gradient of 1 µM of antibiotics the uptake varies between one up to few hundred molecules per second and per channel.Expert opinion: The current research effort is on quantifying the flux for a larger list of compounds on a cellular (mass spectra, fluorescence) or at single channel level (electrophysiology). A larger dataset of single channel permeabilities under various condition will be a powerful tool for understanding and improving the activity of antibiotics.
Collapse
|
20
|
Richter R, Kamal M, García-Rivera MA, Kaspar J, Junk M, Elgaher WA, Srikakulam SK, Gress A, Beckmann A, Grißmer A, Meier C, Vielhaber M, Kalinina O, Hirsch AK, Hartmann RW, Brönstrup M, Schneider-Daum N, Lehr CM. A hydrogel-based in vitro assay for the fast prediction of antibiotic accumulation in Gram-negative bacteria. Mater Today Bio 2020; 8:100084. [PMID: 33313504 PMCID: PMC7720078 DOI: 10.1016/j.mtbio.2020.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Abstract
The pipeline of antibiotics has been for decades on an alarmingly low level. Considering the steadily emerging antibiotic resistance, novel tools are needed for early and easy identification of effective anti-infective compounds. In Gram-negative bacteria, the uptake of anti-infectives is especially limited. We here present a surprisingly simple in vitro model of the Gram-negative bacterial envelope, based on 20% (w/v) potato starch gel, printed on polycarbonate 96-well filter membranes. Rapid permeability measurements across this polysaccharide hydrogel allowed to correctly predict either high or low accumulation for all 16 tested anti-infectives in living Escherichia coli. Freeze-fracture TEM supports that the macromolecular network structure of the starch hydrogel may represent a useful surrogate of the Gram-negative bacterial envelope. A random forest analysis of in vitro data revealed molecular mass, minimum projection area, and rigidity as the most critical physicochemical parameters for hydrogel permeability, in agreement with reported structural features needed for uptake into Gram-negative bacteria. Correlating our dataset of 27 antibiotics from different structural classes to reported MIC values of nine clinically relevant pathogens allowed to distinguish active from nonactive compounds based on their low in vitro permeability specifically for Gram-negatives. The model may help to identify poorly permeable antimicrobial candidates before testing them on living bacteria.
Collapse
Affiliation(s)
- Robert Richter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Mohamed.A.M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Mariel A. García-Rivera
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Jerome Kaspar
- Institute of Engineering Design, Saarland University, 66123 Saarbrücken, Germany
| | - Maximilian Junk
- Institute of Engineering Design, Saarland University, 66123 Saarbrücken, Germany
| | - Walid A.M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Sanjay Kumar Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Alexander Gress
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alexander Grißmer
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Michael Vielhaber
- Institute of Engineering Design, Saarland University, 66123 Saarbrücken, Germany
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Nicole Schneider-Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
21
|
Bafna JA, Sans-Serramitjana E, Acosta-Gutiérrez S, Bodrenko IV, Hörömpöli D, Berscheid A, Brötz-Oesterhelt H, Winterhalter M, Ceccarelli M. Kanamycin Uptake into Escherichia coli Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infect Dis 2020; 6:1855-1865. [PMID: 32369342 DOI: 10.1021/acsinfecdis.0c00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite decades of therapeutic application of aminoglycosides, it is still a matter of debate if porins contribute to the translocation of the antibiotics across the bacterial outer membrane. Here, we quantified the uptake of kanamycin across the major porin channels OmpF and OmpC present in the outer membrane of Escherichia coli. Our analysis revealed that, despite its relatively large size, about 10-20 kanamycin molecules per second permeate through OmpF and OmpC under a 10 μM concentration gradient, whereas OmpN does not allow the passage. Molecular simulations elucidate the uptake mechanism of kanamycin through these porins. Whole-cell studies with a defined set of E. coli porin mutants provide evidence that translocation of kanamycin via porins is relevant for antibiotic potency. The values are discussed with respect to other antibiotics.
Collapse
Affiliation(s)
- Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719Bremen, Germany
| | | | | | - Igor V. Bodrenko
- IOM/CNR, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Daniel Hörömpöli
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research (DZIF) Partner Site, D-72076 Tübingen, Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research (DZIF) Partner Site, D-72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research (DZIF) Partner Site, D-72076 Tübingen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719Bremen, Germany
| | - Matteo Ceccarelli
- IOM/CNR, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
- Department of Physics, University of Cagliari, and CNR/IOM, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| |
Collapse
|
22
|
Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo) 2020; 73:329-364. [PMID: 32152527 PMCID: PMC7223789 DOI: 10.1038/s41429-020-0291-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
The development of new and effective antibacterial drugs to treat multi-drug resistant (MDR) bacteria, especially Gram-negative (G−ve) pathogens, is acknowledged as one of the world’s most pressing health issues; however, the discovery and development of new, nontoxic antibacterials is not a straightforward scientific task, which is compounded by a challenging economic model. This review lists the antibacterials, β-lactamase/β-lactam inhibitor (BLI) combinations, and monoclonal antibodies (mAbs) first launched around the world since 2009 and details the seven new antibiotics and two new β-lactam/BLI combinations launched since 2016. The development status, mode of action, spectra of activity, lead source, and administration route for the 44 small molecule antibacterials, eight β-lactamase/BLI combinations, and one antibody drug conjugate (ADC) being evaluated in worldwide clinical trials at the end of October 2019 are described. Compounds discontinued from clinical development since 2016 and new antibacterial pharmacophores are also reviewed. There has been an increase in the number of early stage clinical candidates, which has been fueled by antibiotic-focused funding agencies; however, there is still a significant gap in the pipeline for the development of new antibacterials with activity against β-metallolactamases, orally administered with broad spectrum G−ve activity, and new treatments for MDR Acinetobacter and gonorrhea.
Collapse
|