1
|
Li S, Armstrong N, Zhao H, Cruz-cosme R, Yang H, Zhong C, Fu W, Wang W, Yang D, Xia N, Cheng T, Tang Q. Zika Virus Infection Downregulates Connexin 43, Disrupts the Cardiomyocyte Gap Junctions and Induces Heart Diseases in A129 Mice. J Virol 2022; 96:e0137322. [PMID: 36226984 PMCID: PMC9645212 DOI: 10.1128/jvi.01373-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is transmitted mostly via mosquito bites and no vaccine is available, so it may reemerge. We and others previously demonstrated that neonatal infection of ZIKV results in heart failure and can be fatal. Animal models implicated ZIKV involvement in viral heart diseases. It is unknown whether and how ZIKV causes heart failure in adults. Herein, we studied the effects of ZIKV infection on the heart function of adult A129 mice. First, we found that ZIKV productively infects the rat-, mouse-, or human-originated heart cell lines and caused ubiquitination-mediated degradation of and distortive effects on connexin 43 (Cx43) protein that is important for communications between cardiomyocytes. Second, ZIKV infection caused 100% death of the A129 mice with decreasing body weight, worsening health score, shrugging fur, and paralysis. The viral replication was detected in multiple organs. In searching for the viral effects on heart of the A129 mice, we found that ZIKV infection resulted in the increase of cardiac muscle enzymes, implicating a viral acute myocardial injury. ZIKV-caused heart injury was also demonstrated by electrocardiogram (ECG) showing widened and fragmented QRS waves, prolonged PR interval, and slower heart rate. The intercalated disc (ICD) between two cardiomyocytes was destroyed, as shown by the electronic microscopy, and the Cx43 distribution in the ICDs was less organized in the ZIKV-infected mice compared to that in the phosphate-buffered saline (PBS)-treated mice. Consistently, ZIKV productively infected the heart of A129 mice and decreased Cx43 protein. Therefore, we demonstrated that ZIKV infection caused heart failure, which might lead to fatal sequelae in ZIKV-infected A129 mice. IMPORTANCE Zika virus (ZIKV) is a teratogen causing devastating sequelae to the newborns who suffer a congenital ZIKV infection while it brings about only mild symptoms to the health-competent older children or adults. Mouse models have played an important role in mechanistic and pathogenic studies of ZIKV. In this study, we employed 3 to 4 week-old A129 mice for ZIKV infection. RT-qPCR assays discovered that ZIKV replicated in multiple organs, including the heart. As a result of ZIKV infection, the A129 mice experienced weight loss, health score worsening, paralysis, and deaths. We revealed that the ZIKV infection caused abnormal electrocardiogram presentations, increased cardiac muscle enzymes, downregulated Cx43, and destroyed the gap junction and the intercalated disc between the cardiomyocytes, implicating that ZIKV may cause an acute myocardial injury in A129 mice. Therefore, our data imply that ZIKV infection may jeopardize the immunocompromised population with a severe clinical consequence, such as heart defect.
Collapse
Affiliation(s)
- Shuxuan Li
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, P.R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Najealicka Armstrong
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Ruth Cruz-cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Chunlian Zhong
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, P.R. China
| | - Wenkun Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Decheng Yang
- Centre for Heart Lung Innovation - St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
2
|
Zhou Z, Zhu R, Yang H, Xu L, Chen H, Wu Y, Yin Z, Huang Q, Zhang D, Liu C, Que Y, Zhang J, Xia N, Cheng T. Development of a rapid neutralization testing system for Rhinovirus C15 based on the enzyme-linked immunospot assay. Front Microbiol 2022; 13:983656. [PMID: 36212859 PMCID: PMC9539532 DOI: 10.3389/fmicb.2022.983656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Human Rhinoviruses (RVs) are dominant pathogens causing a wide range of respiratory tract diseases, posing a huge threat to public health worldwide. Viruses belonging to the RV-C species are more likely to cause severe illnesses and are strongly associated with asthma onset or exacerbations than RV-A or RV-B. Rapid and sensitive detection of neutralizing antibodies (NAbs) against RV-C can promote the development of vaccines and antiviral drugs and help in the diagnosis of viral infection. In this study, a rapid neutralization testing system for RV-C15, based on an enzyme-linked immunospot assay (Nt-ELISPOT) was developed. A monoclonal antibody (MAb), named 9F9, with high binding efficacy for RV-C15 conjugated to horseradish peroxidase (HRP), was used to detect RV-C15-infected cells at a concentration of 2 μg/ml. The optimal infectious dose of RV-C15 was set at 1 × 104 TCID50/well and the cells were fixed with 0.5% formaldehyde diluted in PBS after incubation for 20 h. Compared with the traditional cytopathic effect (CPE)-based neutralization assay (Nt-CPE), Nt-ELISPOT significantly shortened the detection period and showed good consistency with the detection of neutralizing titers of both sera and NAbs. Using Nt-ELISPOT, three anti-RV-C15 NAbs were obtained with IC50 values of 0.16, 0.27, and 11.8 μg/ml, respectively. Moreover, 64 human serum samples collected from a wide range of age groups were tested for NAb against RV-C15 by Nt-ELISPOT. The total seroprevalence was 48.4% (31/64) and the positive rate was lowest in the group under 6 years old. Thus, the Nt-ELISPOT established in this study can be used as a high-throughput and rapid neutralization assay for the screening of NAbs and for seroepidemiological investigation against RV-C15.
Collapse
|
3
|
Islamuddin M, Ali A, Khan WH, Ali A, Hasan SK, Abdullah M, Kato K, Abdin MZ, Parveen S. Development of Highly Sensitive Sandwich ELISA for the Early-Phase Diagnosis of Chikungunya Virus Utilizing rE2-E1 Protein. Infect Drug Resist 2022; 15:4065-4078. [PMID: 35924014 PMCID: PMC9342874 DOI: 10.2147/idr.s347545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Chikungunya is caused by an alpha virus transmitted to humans by an infected mosquito. Infection is generally considered to be self-limiting and non-critical. Chikungunya infection may be diagnosed by severe joint pain with fever, but it is difficult to diagnose because the symptoms of chikungunya are common to many pathogens, including dengue fever. Diagnosis mainly depends on viral culture, reverse transcriptase polymerase chain reaction (RT-PCR), and IgM ELISA. Early and accurate diagnosis of the virus can be achieved by the application of PCR methods, but the high cost and the need for a thermal cycler restrict the use of such methods. On the other hand, antibody-based IgM ELISA is considered to be inexpensive, but antibodies against chikungunya virus (CHIKV) only develop after 4 days of infection, so it has limited application in the earlier diagnosis of viral infection and the management of patients. Because of these challenges, a simple antigen-based sensitive, specific, and rapid detection method is required for the early and accurate clinical diagnosis of chikungunya. Methods The amino acid sequence of CHIKV ectodomain E1 and E2 proteins was analyzed using bioinformatics tools to determine the antigenic residues, particularly the B-cell epitopes and their characteristics. Recombinant E2-E1 CHIKV antigen was used for the development of polyclonal antibodies in hamsters and IgG was purified. Serological tests of 96 CHIKV patients were conducted by antigen-capture ELISA using primary antibodies raised against rCHIKV E2-E1 in hamsters and human anti-CHIKV antibodies. Results We observed high specificity and sensitivity, of 100% and 95.8%, respectively, and these values demonstrate the efficiency of the test as a clinical diagnostic tool. There was no cross-reactivity with samples taken from dengue patients. Discussion Our simple and sensitive sandwich ELISA for the early-phase detection of CHIKV infection may be used to improve the diagnosis of chikungunya.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Correspondence: Mohammad Islamuddin; Shama Parveen, Email ;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Wajihul Hasan Khan
- Molecular Virology Lab, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Syed Kazim Hasan
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Abdullah
- Microbiology Laboratory, Ansari Health Center, Jamia Millia Islamia, New Delhi 110025, India
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Malik Zainul Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Hamdard University, New Delhi 110026, India
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
4
|
Zhu L, Liu S, Zhuo Z, Lin Y, Zhang Y, Wang X, Kong L, Wang T. Expression and immunogenicity of nsp10 protein of porcine epidemic diarrhea virus. Res Vet Sci 2022; 144:34-43. [PMID: 35038674 PMCID: PMC8721950 DOI: 10.1016/j.rvsc.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes lethal watery diarrhea to the piglets, which poses significant economic losses and public health concerns. The nsp10 protein of PEDV is essential regulatory subunits that are critical for virus replication. Since PEDV nsp10 is a crucial regulator of viral RNA synthesis, it is promising that nsp10 might become anti-virus drugs target or candidate for rapid diagnosis of PEDV infection. In this study, the PEDV nsp10 was inserted into pMAL-c2x-MBP / pET-28a vector, efficiently and stably expressed in E.coli system. Then the purified nsp10 protein was found to mediate potent antibody responses in immunized mice. The antibodies of immunized mice and PEDV infection swine strongly recognized purified nsp10 protein from cell lysates. Furthermore, cytokines test revealed that the expression of IL-2, IL-4, IL-10, TNF-α, IFN-γ were significantly higher than those in control group, indicated that purified nsp10 protein induce the cellular immune response mechanism in mice. Using modified seroneutralization test, we also demonstrated that sera from nsp10-immunized mice inhibited PEDV replication to some extent. These findings suggest that nsp10 has a high immunogenicity. This study may have implications for future development of PEDV detection or anti-virus drugs for swine.
Collapse
Affiliation(s)
- Liting Zhu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiguo Liu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zewen Zhuo
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanxi Lin
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Wu Y, Yin Z, Zhu R, Xu L, Huang Q, Zhang D, Yang H, Zhou Z, Zhang J, Cheng T, Xia N. Development of a rapid neutralization assay for the detection of neutralizing antibodies against coxsackievirus B1. Diagn Microbiol Infect Dis 2022; 103:115676. [DOI: 10.1016/j.diagmicrobio.2022.115676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
|
6
|
Wang G, Huang P, Hong J, Fu R, Wu Q, Chen R, Lin L, Han Q, Chen H, Chen Y, Xia N. Establishment of a rapid ELISPOT assay for influenza virus titration and neutralizing antibody detection. J Med Virol 2021; 93:3455-3464. [PMID: 32621615 DOI: 10.1002/jmv.26257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 11/05/2022]
Abstract
Seasonal influenza is an acute respiratory infection causing around 500 000 global deaths annually. There is an unmet medical need to develop more effective antiviral drugs and vaccines against influenza infection. A rapid, accurate, high-throughput titration assay for influenza virus particles or neutralizing antibodies would be extremely useful in these research fields. However, commonly used methods such as tissue culture infective dose and plaque-forming units (PFU) for virus particle quantification, and the plaque reduction neutralization test (PRNT) for antibody determination are time-consuming, laborious, and have limited accuracy. In this study, we developed an efficient assay based on the enzyme-linked immunospot (ELISPOT) technique for the influenza virus and neutralizing antibody titration. Two broad-spectrum antibodies recognizing the nucleoproteins of influenza A and B viruses were used in the assay to broadly and highly sensitively detect influenza virus-infected cells at 16 hours postinfection. An optimized cell culture medium with no tosyl phenylalanyl chloromethyl ketone trypsin and high dose oseltamivir acid was used to improve quantitation accuracy. This ELISPOT assay displayed a good correlation (R2 = 0.9851) with the PFU assay when used to titrate 30 influenza virus isolates. The assay was also applied to measure influenza-neutralizing antibodies in 40 human sera samples, showing a good correlation (R2 = 0.9965) with the PRNT assay. This ELISPOT titration assay is a rapid, accurate, high-throughput assay for quantification of influenza virus and neutralizing antibodies, and provides a powerful tool for research into and development of drugs and vaccines against influenza.
Collapse
Affiliation(s)
- Guosong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Pengfei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Junping Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Qian Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ruiqi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Lina Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Qiangyuan Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Honglin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Yap TF, Liu Z, Shveda RA, Preston DJ. A predictive model of the temperature-dependent inactivation of coronaviruses. APPLIED PHYSICS LETTERS 2020; 117:060601. [PMID: 32817726 PMCID: PMC7428726 DOI: 10.1063/5.0020782] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing single-use personal protective equipment. The uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal degradation that will help model the COVID-19 pandemic and mitigate future outbreaks. This work introduces a thermodynamic model that synthesizes existing data into an analytical framework built on first principles, including the rate law for a first-order reaction and the Arrhenius equation, to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal decontamination guidelines for personal protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) reduction in virus concentration can be achieved, on average, in 3 min (under the same conditions, a more conservative decontamination time of 39 min represents the upper limit of a 95% interval) and can be performed in most home ovens without reducing the efficacy of typical N95 masks as shown in recent experimental reports. This model will also allow for epidemiologists to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into models forecasting the spread of the pandemic across different climates and seasons.
Collapse
Affiliation(s)
- Te Faye Yap
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Zhen Liu
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Rachel A. Shveda
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Daniel J. Preston
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
8
|
Balingit JC, Phu Ly MH, Matsuda M, Suzuki R, Hasebe F, Morita K, Moi ML. A Simple and High-Throughput ELISA-Based Neutralization Assay for the Determination of Anti-Flavivirus Neutralizing Antibodies. Vaccines (Basel) 2020; 8:E297. [PMID: 32532141 PMCID: PMC7350015 DOI: 10.3390/vaccines8020297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
Mosquito-borne flavivirus infections, including dengue virus and Zika virus, are major public health threats globally. While the plaque reduction neutralization test (PRNT) is considered the gold standard for determining neutralizing antibody levels to flaviviruses, the assay is time-consuming and laborious. This study, therefore, aimed to develop an enzyme-linked immunosorbent assay (ELISA)-based microneutralization test (EMNT) for the detection of neutralizing antibodies to mosquito-borne flaviviruses. The inhibition of viral growth due to neutralizing antibodies was determined colorimetrically by using EMNT. Given the significance of Fcγ-receptors (FcγR) in antibody-mediated neutralization and antibody-dependent enhancement (ADE) of flavivirus infection, non-FcγR and FcγR-expressing cell lines were used in the EMNT to allow the detection of the sum of neutralizing and immune-enhancing antibody activity as the neutralizing titer. Using anti-flavivirus monoclonal antibodies and clinical samples, the utility of EMNT was evaluated by comparing the end-point titers of the EMNT and the PRNT. The correlation between EMNT and PRNT titers was strong, indicating that EMNT was robust and reproducible. The new EMNT assay combines the biological functional assessment of virus neutralization activity and the technical advantages of ELISA and, is simple, reliable, practical, and could be automated for high-throughput implementation in flavivirus surveillance studies and vaccine trials.
Collapse
Affiliation(s)
- Jean Claude Balingit
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Minh Huong Phu Ly
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan; (M.M.); (R.S.)
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan; (M.M.); (R.S.)
| | - Futoshi Hasebe
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Viet Nam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| |
Collapse
|