1
|
Mukherjee S, Chakravarty S, Haldar J. Revitalizing Antibiotics with Macromolecular Engineering: Tackling Gram-Negative Superbugs and Mixed Species Bacterial Biofilm Infections In Vivo. Biomacromolecules 2025; 26:2211-2226. [PMID: 40040432 DOI: 10.1021/acs.biomac.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The escalating prevalence of multidrug-resistant Gram-negative pathogens, coupled with dwindling antibiotic development, has created a critical void in the clinical pipeline. This alarming issue is exacerbated by the formation of biofilms by these superbugs and their frequent coexistence in mixed-species biofilms, conferring extreme antibiotic tolerance. Herein, we present an amphiphilic cationic macromolecule, ACM-AHex, as an innovative antibiotic adjuvant to rejuvenate and repurpose resistant antibiotics, for instance, rifampicin, fusidic acid, erythromycin, and chloramphenicol. ACM-AHex mildly perturbs the bacterial membrane, enhancing antibiotic permeability, hampers efflux machinery, and produces reactive oxygen species, resulting in a remarkable 64-1024-fold potentiation in antibacterial activity. The macromolecule reduces bacterial virulence and macromolecule-drug cocktail significantly eradicate both mono- and multispecies bacterial biofilms, achieving >99.9% bacterial reduction in the murine biofilm infection model. Demonstrating potent biocompatibility across multiple administration routes, ACM-AHex offers a promising strategy to restore obsolete antibiotics and combat recalcitrant Gram-negative biofilm-associated infections, advocating for further clinical evaluation as a next-generation macromolecular antibiotic adjuvant.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sayan Chakravarty
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
2
|
Xiao G, Cui Y, Zhou L, Niu C, Wang B, Wang J, Zhou S, Pan M, Chan CK, Xia Y, Xu L, Lu Y, Chen S. Identification of a phenyl ester covalent inhibitor of caseinolytic protease and analysis of the ClpP1P2 inhibition in mycobacteria. MLIFE 2025; 4:155-168. [PMID: 40313980 PMCID: PMC12042115 DOI: 10.1002/mlf2.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 05/03/2025]
Abstract
The caseinolytic protease complex ClpP1P2 is crucial for protein homeostasis in mycobacteria and stress response and virulence of the pathogens. Its role as a potential drug target for combating tuberculosis (TB) has just begun to be substantiated in drug discovery research. We conducted a biochemical screening targeting the ClpP1P2 using a library of compounds phenotypically active against Mycobacterium tuberculosis (Mtb). The screening identified a phenyl ester compound GDI-5755, inhibiting the growth of Mtb and M. bovis BCG, the model organism of mycobacteria. GDI-5755 covalently modified the active-site serine residue of ClpP1, rendering the peptidase inactive, which was delineated through protein mass spectrometry and kinetic analyses. GDI-5755 exerted antibacterial activity by inhibiting ClpP1P2 in the bacteria, which could be demonstrated through a minimum inhibitory concentration (MIC) shift assay with a clpP1 CRISPRi knockdown (clpP1-KD) mutant GH189. The knockdown also remarkably heightened the mutant's sensitivity to ethionamide and meropenem, but not to many other TB drugs. On the other hand, a comparative proteomic analysis of wild-type cells exposed to GDI-5755 revealed the dysregulated proteome, specifically showing changes in the expression levels of multiple TB drug targets, including EthA, LdtMt2, and PanD. Subsequent evaluation confirmed the synergistic activity of GDI-5755 when combined with the TB drugs to inhibit mycobacterial growth. Our findings indicate that small-molecule inhibitors targeting ClpP1P2, when used alongside existing TB medications, could represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Genhui Xiao
- Global Health Drug Discovery InstituteBeijingChina
| | - Yumeng Cui
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Chuya Niu
- Global Health Drug Discovery InstituteBeijingChina
| | - Bing Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Jinglan Wang
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Miaomiao Pan
- Global Health Drug Discovery InstituteBeijingChina
| | - Chi Kin Chan
- Global Health Drug Discovery InstituteBeijingChina
| | - Yan Xia
- Global Health Drug Discovery InstituteBeijingChina
| | - Lan Xu
- Global Health Drug Discovery InstituteBeijingChina
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Shawn Chen
- Global Health Drug Discovery InstituteBeijingChina
| |
Collapse
|
3
|
Khandelwal NK, Gupta M, Gomez JE, Barkho S, Guan Z, Eng AY, Kawate T, Balasubramani SG, Sali A, Hung DT, Stroud RM. Structure and inhibition mechanisms of Mycobacterium tuberculosis essential transporter efflux protein A. Nat Commun 2025; 16:3139. [PMID: 40169593 PMCID: PMC11961569 DOI: 10.1038/s41467-025-58133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
A broad chemical genetic screen in Mycobacterium tuberculosis (Mtb) identified compounds (BRD-8000.3 and BRD-9327) that inhibit the essential efflux pump EfpA. To understand the mechanisms of inhibition, we determined the structures of EfpA with these inhibitors bound at 2.7-3.4 Å resolution. Our structures reveal different mechanisms of inhibition by the two inhibitors. BRD-8000.3 binds in a tunnel contacting the lipid bilayer and extending toward the central cavity to displace the fatty acid chain of a lipid molecule bound in the apo structure, suggesting its blocking of an access route for a natural lipidic substrate. Meanwhile, BRD-9327 binds in the outer vestibule without complete blockade of the substrate path to the outside, suggesting its possible inhibition of the movement necessary for alternate access of the transporter. Our results show EfpA as a potential lipid transporter, explain the basis of the synergy of these inhibitors and their potential for combination anti-tuberculosis therapy.
Collapse
Affiliation(s)
- Nitesh Kumar Khandelwal
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - James E Gomez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Ashley Y Eng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Sree Ganesh Balasubramani
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Cardona ST, Rahman ASMZ, Novomisky Nechcoff J. Innovative perspectives on the discovery of small molecule antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:19. [PMID: 40082593 PMCID: PMC11906701 DOI: 10.1038/s44259-025-00089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Antibiotics are essential to modern medicine, but multidrug-resistant (MDR) bacterial infections threaten their efficacy. Resistance evolution shortens antibiotic lifespans, limiting investment returns and slowing new approvals. Consequently, the WHO defines four innovation criteria: new chemical class, target, mode of action (MoA), and lack of cross-resistance. This review explores innovative discovery approaches, including AI-driven screening, metagenomics, and target-based strategies, to develop novel antibiotics that meet these criteria and combat MDR infections.
Collapse
Affiliation(s)
- Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| | | | | |
Collapse
|
5
|
Ofori-Anyinam B, Hamblin M, Coldren ML, Li B, Mereddy G, Shaikh M, Shah A, Grady C, Ranu N, Lu S, Blainey PC, Ma S, Collins JJ, Yang JH. Catalase activity deficiency sensitizes multidrug-resistant Mycobacterium tuberculosis to the ATP synthase inhibitor bedaquiline. Nat Commun 2024; 15:9792. [PMID: 39537610 PMCID: PMC11561320 DOI: 10.1038/s41467-024-53933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB), defined as resistance to the first-line drugs isoniazid and rifampin, is a growing source of global mortality and threatens global control of tuberculosis disease. The diarylquinoline bedaquiline has recently emerged as a highly efficacious drug against MDR-TB and kills Mycobacterium tuberculosis by inhibiting mycobacterial ATP synthase. However, the mechanisms underlying bedaquiline's efficacy against MDR-TB remain unknown. Here we investigate bedaquiline hyper-susceptibility in drug-resistant Mycobacterium tuberculosis using systems biology approaches. We discovered that MDR clinical isolates are commonly sensitized to bedaquiline. This hypersensitization is caused by several physiological changes induced by deficient catalase activity. These include enhanced accumulation of reactive oxygen species, increased susceptibility to DNA damage, induction of sensitizing transcriptional programs, and metabolic repression of several biosynthetic pathways. In this work we demonstrate how resistance-associated changes in bacterial physiology can mechanistically induce collateral antimicrobial drug sensitivity and reveal druggable vulnerabilities in antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Meagan Hamblin
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Eversana Consulting, Boston, MA, 02120, USA
| | - Miranda L Coldren
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | - Barry Li
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Gautam Mereddy
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Mustafa Shaikh
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Avi Shah
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Courtney Grady
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Navpreet Ranu
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- insitro, South San Francisco, CA, 94080, USA
| | - Sean Lu
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Paul C Blainey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute of Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Romano KP, Bagnall J, Warrier T, Sullivan J, Ferrara K, Orzechowski M, Nguyen PH, Raines K, Livny J, Shoresh N, Hung DT. Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics. Proc Natl Acad Sci U S A 2024; 121:e2409747121. [PMID: 39467118 PMCID: PMC11551328 DOI: 10.1073/pnas.2409747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
Collapse
Affiliation(s)
- Keith P. Romano
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Josephine Bagnall
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Thulasi Warrier
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jaryd Sullivan
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kristina Ferrara
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Marek Orzechowski
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Phuong H. Nguyen
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kyra Raines
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jonathan Livny
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Noam Shoresh
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Deborah T. Hung
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
7
|
Li D, Zhang X, Yao Y, Sun X, Sun J, Ma X, Yuan K, Bai G, Pang X, Hua R, Guo T, Mi Y, Wu L, Zhang J, Wu Y, Liu Y, Wang P, Wong CCL, Chen XW, Xiao H, Gao GF, Gao F. Structure and function of Mycobacterium tuberculosis EfpA as a lipid transporter and its inhibition by BRD-8000.3. Proc Natl Acad Sci U S A 2024; 121:e2412653121. [PMID: 39441632 PMCID: PMC11536138 DOI: 10.1073/pnas.2412653121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
EfpA, the first major facilitator superfamily (MFS) protein identified in Mycobacterium tuberculosis (Mtb), is an essential efflux pump implicated in resistance to multiple drugs. EfpA-inhibitors have been developed to kill drug-tolerant Mtb. However, the biological function of EfpA has not yet been elucidated. Here, we present the cryo-EM structures of EfpA complexed with lipids or the inhibitor BRD-8000.3 at resolutions of 2.9 Å and 3.4 Å, respectively. Unexpectedly, EfpA forms an antiparallel dimer. Functional studies reveal that EfpA is a lipid transporter and BRD-8000.3 inhibits its lipid transport activity. Intriguingly, the mutation V319F, known to confer resistance to BRD-8000.3, alters the expression level and oligomeric state of EfpA. Based on our results and the observation of other antiparallel dimers in the MFS family, we propose an antiparallel-function model of EfpA. Collectively, our work provides structural and functional insights into EfpA's role in lipid transport and drug resistance, which would accelerate the development of antibiotics against this promising drug target.
Collapse
Affiliation(s)
- Delin Li
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
| | - Xiaokang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yuanhang Yao
- College of Future Technology, Peking University, Beijing100871, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing100871, China
| | - Junqing Sun
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
- Shanxi Agricultural University, Jinzhong, Shanxi030801, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen518055, China
| | - Kai Yuan
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Guijie Bai
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Xuefei Pang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Rongmao Hua
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Tianling Guo
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Yuqian Mi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing100871, China
| | - Jie Zhang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen518112, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen518055, China
| | - Catherine C. L. Wong
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing100871, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100730, China
| | - Xiao-wei Chen
- College of Future Technology, Peking University, Beijing100871, China
- State Key Laboratory of Membrane Biology, Peking University, Center for Life Sciences, Peking University, Beijing100871, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - George Fu Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| |
Collapse
|
8
|
Khandelwal NK, Gupta M, Gomez JE, Barkho S, Guan Z, Eng AY, Kawate T, Balasubramani SG, Sali A, Hung DT, Stroud RM. Structure and inhibition mechanisms of Mycobacterium tuberculosis essential transporter efflux protein A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611325. [PMID: 39282303 PMCID: PMC11398473 DOI: 10.1101/2024.09.04.611325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A broad chemical genetics screen in Mycobacterium tuberculosis (Mtb) to identify inhibitors of established or previously untapped targets for therapeutic development yielded compounds (BRD-8000.3 and BRD-9327) that inhibit the essential efflux pump EfpA. To understand the mechanisms of inhibition by these compounds, we determined the structures of EfpA with inhibitors bound at 2.7 - 3.4 Å resolution. Our structures reveal different mechanisms of inhibition for the two inhibitors. BRD-8000.3 binds in a tunnel making contact with the lipid bilayer and extending toward the central cavity to displace the fatty acid chain of a lipid molecule bound in the apo structure, suggesting its blocking of an access route for a natural lipidic substrate, in contrast to its uncompetitive mechanism for the small molecule substrate ethidium bromide which likely enters through an alternative tunnel. Meanwhile, BRD-9327 binds in the outer vestibule without complete blockade of the substrate path to the outside, suggesting its possible inhibition of the dynamical motion necessary for "alternate access" to the two different sides of the membrane, as is characteristic of major facilitator superfamily (MFS) transporters. Both inhibitors may have a role in inhibiting the "alternate access" mechanism that could account for the uncompetitive nature of their efflux of some substrates. Our results explain the basis of the synergy of these inhibitors and their potential for combination in a multi drug strategy for anti-tuberculosis therapy. They also potentially point to a possible function for this essential efflux pump as a lipid transporter. The structures provide a foundation for rational modification of these inhibitors to increase potency.
Collapse
Affiliation(s)
- Nitesh Kumar Khandelwal
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- current address Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - James E Gomez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Ashley Y Eng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tomo Kawate
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sree Ganesh Balasubramani
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Wang S, Wang K, Song K, Lai ZW, Li P, Li D, Sun Y, Mei Y, Xu C, Liao M. Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition. Nat Commun 2024; 15:7710. [PMID: 39231991 PMCID: PMC11375168 DOI: 10.1038/s41467-024-51948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
As the first identified multidrug efflux pump in Mycobacterium tuberculosis (Mtb), EfpA is an essential protein and promising drug target. However, the functional and inhibitory mechanisms of EfpA are poorly understood. Here we report cryo-EM structures of EfpA in outward-open conformation, either bound to three endogenous lipids or the inhibitor BRD-8000.3. Three lipids inside EfpA span from the inner leaflet to the outer leaflet of the membrane. BRD-8000.3 occupies one lipid site at the level of inner membrane leaflet, competitively inhibiting lipid binding. EfpA resembles the related lysophospholipid transporter MFSD2A in both overall structure and lipid binding sites and may function as a lipid flippase. Combining AlphaFold-predicted EfpA structure, which is inward-open, we propose a complete conformational transition cycle for EfpA. Together, our results provide a structural and mechanistic foundation to comprehend EfpA function and develop EfpA-targeting anti-TB drugs.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.
| | - Kun Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- mRNA Center of Excellence, Sanofi, Waltham, USA
| | - Pengfei Li
- Single Particle, LLC, San Diego, CA, USA
| | - Dongying Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Cryo-electron microscopy center, Southern University of Science and Technology, Shenzhen, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maofu Liao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
10
|
Roberts AH, Moon CW, Faulkner V, Kendall SL, Waddell SJ, Bacon J. EfpA is required for regrowth of Mycobacterium tuberculosis following isoniazid exposure. Antimicrob Agents Chemother 2024; 68:e0026124. [PMID: 39037241 PMCID: PMC11304720 DOI: 10.1128/aac.00261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/02/2024] [Indexed: 07/23/2024] Open
Abstract
Efflux of antibiotics is an important survival strategy in bacteria. Mycobacterium tuberculosis has approximately sixty efflux pumps, but little is known about the role of each pump or the substrates they efflux. The putative efflux pump, EfpA, is a member of the major facilitator superfamily and has been shown to be essential by saturation transposon mutagenesis studies. It has been implicated in the efflux of isoniazid (INH), which is a first-line drug used to treat tuberculosis (TB). This is supported by evidence from transcriptional profiling showing that efpA is induced in response to INH exposure. However, its roles in the physiology and adaptation of M. tuberculosis to antibiotics have yet to be determined. In this study, we describe the repression of efpA in M. tuberculosis, using CRISPR interference (CRISPRi) to knockdown the expression of this essential gene and the direct effect of this on the ability of M. tuberculosis to survive exposure to INH over a 45-day time course. We determined that wild-type levels of efpA were required for recovery of M. tuberculosis following INH exposure and that, after 45 days of INH exposure, only a few viable colonies were recoverable from efpA-repressed M. tuberculosis. We conclude that EfpA is required for recovery of M. tuberculosis following INH exposure, which could reduce the efficacy of INH in vivo, and that EfpA may have a role in the development of resistance during drug therapy.
Collapse
Affiliation(s)
- Adam H. Roberts
- Discovery Group, VDEC, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Christopher W. Moon
- Discovery Group, VDEC, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Simon J. Waddell
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Joanna Bacon
- Discovery Group, VDEC, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| |
Collapse
|
11
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
12
|
Shyam M, Thakur A, Velez C, Daniel C, Acevedo O, Bhakta S, Jayaprakash V. Mycobactin analogue interacting with siderophore efflux-pump protein: insights from molecular dynamics simulations and whole-cell assays. FRONTIERS IN ANTIBIOTICS 2024; 3:1362516. [PMID: 39816270 PMCID: PMC11731696 DOI: 10.3389/frabi.2024.1362516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 01/18/2025]
Abstract
Introduction In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species. In recent decades, notable approaches have been accounted for EPI development and have resulted in the discovery of several EPIs including SQ109 and AU1235. In context, to accelerate newer EPIs with novel mode of action here we have discussed mycobactin analogues and highlighted in silico binding orientation with siderophore efflux-pump proteins MmpL4/5. Methods 3-(2-hydroxyphenyl)-5-(aryl)-pyrazoline series was investigated for whole-cell efflux-pump inhibitory activity against Mycobacterium smegmatis and Mycobacterium abscessus. Machine learning and molecular dynamics were performed to construct a MmpL4/5 complex embedded in a lipid bilayer to identify the putative binding site and to predict ligand-protein binding energetics. Furthermore, the identified HIT compound was investigated in synergistic assay with bedaquiline. Results Compound Il, 2-(5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, was identified as the most potent efflux pump inhibitor against M. smegmatis in whole-cell efflux-pump investigation. Followed HIT Il employed against M. abscessus for efflux-pump inhibition investigations and notable whole-cell efflux-pump inhibitory profile has been observed. The theoretical investigations predicted compound Il to be selective towards MmpL4, with significant hydrogen bonding and π-π stacking interactions effectively blocking a critical Asp-Tyr dyad interaction network necessary for proton translocation. Compound Il with bedaquiline highlighted an additive profile against the M. abscessus pathogen. Conclusions MD simulations and whole-cell assays are indicating potential development of compound Il as an adjunct to the existing therapeutic regimen against mycobacterial infections.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Chris Daniel
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
13
|
Wang S, Wang K, Song K, Li P, Li D, Sun Y, Mei Y, Xu C, Liao M. Structures of the essential efflux pump EfpA from Mycobacterium tuberculosis reveal the mechanisms of substrate transport and small-molecule inhibition. RESEARCH SQUARE 2024:rs.3.rs-3740027. [PMID: 38260587 PMCID: PMC10802681 DOI: 10.21203/rs.3.rs-3740027/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As the first identified multidrug efflux pump in Mycobacterium tuberculosis (Mtb), EfpA is an essential protein and promising drug target. However, the functional and inhibitory mechanisms of EfpA are poorly understood. Herein we report cryo-EM structures of EfpA in outward-open conformation, either bound to three endogenous lipids or the inhibitor BRD-8000.3. Three lipids inside EfpA span from the inner leaflet to the outer leaflet of the membrane. BRD-8000.3 occupies one lipid site at the level of inner membrane leaflet, competitively inhibiting lipid binding. EfpA resembles the related lysophospholipid transporter MFSD2A in both overall structure and lipid binding sites, and may function as a lipid flippase. Combining AlphaFold-predicted EfpA structure, which is inward-open, we propose a complete conformational transition cycle for EfpA. Together, our results provide a structural and mechanistic foundation to comprehend EfpA function and develop EfpA-targeting anti-TB drugs.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
| | - Kun Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pengfei Li
- Single Particle, LLC, San Diego, CA, USA
| | - Dongying Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Present address: Cryo-electron microscopy center, Southern University of Science and Technology, Shenzhen, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Present address: Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
- Present address: Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Shyam M, Bhattacharje G, Daniel C, Kumar A, Yadav P, Mukherjee P, Singh S, Das AK, Narender T, Singh A, Jayaprakash V, Bhakta S. Rationally Designed Novel Phenyloxazoline Synthase Inhibitors: Chemical Synthesis and Biological Evaluation to Accelerate the Discovery of New Antimycobacterial Antibiotics. Molecules 2023; 28:8115. [PMID: 38138601 PMCID: PMC10745776 DOI: 10.3390/molecules28248115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The uncontrolled spread of drug-resistant tuberculosis (DR-TB) clinical cases necessitates the urgent discovery of newer chemotypes with novel mechanisms of action. Here, we report the chemical synthesis of rationally designed novel transition-state analogues (TSAs) by targeting the cyclization (Cy) domain of phenyloxazoline synthase (MbtB), a key enzyme of the conditionally essential siderophore biosynthesis pathway. Following bio-assay-guided evaluation of TSA analogues preferentially in iron-deprived and iron-rich media to understand target preferentiality against a panel of pathogenic and non-pathogenic mycobacteria strains, we identified a hit, i.e., TSA-5. Molecular docking, dynamics, and MMPBSA calculations enabled us to comprehend TSA-5's stable binding at the active site pocket of MbtB_Cy and the results imply that the MbtB_Cy binding pocket has a strong affinity for electron-withdrawing functional groups and contributes to stable polar interactions between enzyme and ligand. Furthermore, enhanced intracellular killing efficacy (8 μg/mL) of TSA-5 against Mycobacterium aurum in infected macrophages is noted in comparison to moderate in vitro antimycobacterial efficacy (64 μg/mL) against M. aurum. TSA-5 also demonstrates whole-cell efflux pump inhibitory activity against Mycobacterium smegmatis. Identification of TSA-5 by focusing on the modular MbtB_Cy domain paves the way for accelerating novel anti-TB antibiotic discoveries.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
- Mycobacteria Research Laboratory, School of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK;
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (G.B.); (A.K.D.)
| | - Chris Daniel
- Mycobacteria Research Laboratory, School of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK;
| | - Amrendra Kumar
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India; (A.K.); (P.Y.); (T.N.)
| | - Pragya Yadav
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India; (A.K.); (P.Y.); (T.N.)
| | - Piyali Mukherjee
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, CV Raman Avenue, Bengaluru 560012, India; (P.M.); (S.S.); (A.S.)
| | - Samsher Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, CV Raman Avenue, Bengaluru 560012, India; (P.M.); (S.S.); (A.S.)
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (G.B.); (A.K.D.)
| | - Tadigoppula Narender
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India; (A.K.); (P.Y.); (T.N.)
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, CV Raman Avenue, Bengaluru 560012, India; (P.M.); (S.S.); (A.S.)
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, School of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK;
| |
Collapse
|
15
|
Ofori-Anyinam N, Hamblin M, Coldren ML, Li B, Mereddy G, Shaikh M, Shah A, Ranu N, Lu S, Blainey PC, Ma S, Collins JJ, Yang JH. KatG catalase deficiency confers bedaquiline hyper-susceptibility to isoniazid resistant Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562707. [PMID: 37905073 PMCID: PMC10614911 DOI: 10.1101/2023.10.17.562707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a growing source of global mortality and threatens global control of tuberculosis (TB) disease. The diarylquinoline bedaquiline (BDQ) recently emerged as a highly efficacious drug against MDR-TB, defined as resistance to the first-line drugs isoniazid (INH) and rifampin. INH resistance is primarily caused by loss-of-function mutations in the catalase KatG, but mechanisms underlying BDQ's efficacy against MDR-TB remain unknown. Here we employ a systems biology approach to investigate BDQ hyper-susceptibility in INH-resistant Mycobacterium tuberculosis . We found hyper-susceptibility to BDQ in INH-resistant cells is due to several physiological changes induced by KatG deficiency, including increased susceptibility to reactive oxygen species and DNA damage, remodeling of transcriptional programs, and metabolic repression of folate biosynthesis. We demonstrate BDQ hyper-susceptibility is common in INH-resistant clinical isolates. Collectively, these results highlight how altered bacterial physiology can impact drug efficacy in drug-resistant bacteria.
Collapse
|
16
|
Waller NJE, Cheung CY, Cook GM, McNeil MB. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis. Nat Commun 2023; 14:1517. [PMID: 36934122 PMCID: PMC10024696 DOI: 10.1038/s41467-023-37184-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
The increasing incidence of drug resistance in Mycobacterium tuberculosis has diminished the efficacy of almost all available antibiotics, complicating efforts to combat the spread of this global health burden. Alongside the development of new drugs, optimised drug combinations are needed to improve treatment success and prevent the further spread of antibiotic resistance. Typically, antibiotic resistance leads to reduced sensitivity, yet in some cases the evolution of drug resistance can lead to enhanced sensitivity to unrelated drugs. This phenomenon of collateral sensitivity is largely unexplored in M. tuberculosis but has the potential to identify alternative therapeutic strategies to combat drug-resistant strains that are unresponsive to current treatments. Here, by using drug susceptibility profiling, genomics and evolutionary studies we provide evidence for the existence of collateral drug sensitivities in an isogenic collection M. tuberculosis drug-resistant strains. Furthermore, in proof-of-concept studies, we demonstrate how collateral drug phenotypes can be exploited to select against and prevent the emergence of drug-resistant strains. This study highlights that the evolution of drug resistance in M. tuberculosis leads to collateral drug responses that can be exploited to design improved drug regimens.
Collapse
Affiliation(s)
- Natalie J E Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Kingdon ADH, Meosa-John AR, Batt SM, Besra GS. Vanoxerine kills mycobacteria through membrane depolarization and efflux inhibition. Front Microbiol 2023; 14:1112491. [PMID: 36778873 PMCID: PMC9909702 DOI: 10.3389/fmicb.2023.1112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis is a deadly pathogen, currently the leading cause of death worldwide from a single infectious agent through tuberculosis infections. If the End TB 2030 strategy is to be achieved, additional drugs need to be identified and made available to supplement the current treatment regimen. In addition, drug resistance is a growing issue, leading to significantly lower treatment success rates, necessitating further drug development. Vanoxerine (GBR12909), a dopamine re-uptake inhibitor, was recently identified as having anti-mycobacterial activity during a drug repurposing screening effort. However, its effects on mycobacteria were not well characterized. Herein, we report vanoxerine as a disruptor of the membrane electric potential, inhibiting mycobacterial efflux and growth. Vanoxerine had an undetectable level of resistance, highlighting the lack of a protein target. This study suggests a mechanism of action for vanoxerine, which will allow for its continued development or use as a tool compound.
Collapse
|
18
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
19
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
20
|
Tomasi FG, Rubin EJ. Failing upwards: Genetics-based strategies to improve antibiotic discovery and efficacy in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:932556. [PMID: 36189351 PMCID: PMC9519881 DOI: 10.3389/fcimb.2022.932556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Therapeutic advances in the 20th century significantly reduced tuberculosis (TB) mortality. Nonetheless, TB still poses a massive global health challenge with significant annual morbidity and mortality that has been amplified during the COVID-19 pandemic. Unlike most common bacterial infectious diseases, successful TB treatment requires months-long regimens, which complicates the ability to treat all cases quickly and effectively. Improving TB chemotherapy by reducing treatment duration and optimizing combinations of drugs is an important step to reducing relapse. In this review, we outline the limitations of current multidrug regimens against TB and have reviewed the genetic tools available to improve the identification of drug targets. The rational design of regimens that sterilize diverse phenotypic subpopulations will maximize bacterial killing while minimizing both treatment duration and infection relapse. Importantly, the TB field currently has all the necessary genetic and analytical tools to screen for and prioritize drug targets in vitro based on the vulnerability of essential and non-essential genes in the Mtb genome and to translate these findings in in vivo models. Combining genetic methods with chemical screens offers a formidable strategy to redefine the preclinical design of TB therapy by identifying powerful new targets altogether, as well as targets that lend new efficacy to existing drugs.
Collapse
Affiliation(s)
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
21
|
Veale CGL, Talukdar A, Vauzeilles B. ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chem Biol 2022; 17:728-743. [PMID: 35293726 DOI: 10.1021/acschembio.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clinton G. L. Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Shyam M, Verma H, Bhattacharje G, Mukherjee P, Singh S, Kamilya S, Jalani P, Das S, Dasgupta A, Mondal A, Das AK, Singh A, Brucoli F, Bagnéris C, Dickman R, Basavanakatti VN, Naresh Babu P, Sankaran V, Dev A, Sinha BN, Bhakta S, Jayaprakash V. Mycobactin Analogues with Excellent Pharmacokinetic Profile Demonstrate Potent Antitubercular Specific Activity and Exceptional Efflux Pump Inhibition. J Med Chem 2022; 65:234-256. [PMID: 34981940 DOI: 10.1021/acs.jmedchem.1c01349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we have designed and synthesized pyrazoline analogues that partially mimic the structure of mycobactin, to address the requirement of novel therapeutics to tackle the emerging global challenge of antimicrobial resistance (AMR). Our investigation resulted in the identification of novel lead compounds 44 and 49 as potential mycobactin biosynthesis inhibitors against mycobacteria. Moreover, candidates efficiently eradicated intracellularly surviving mycobacteria. Thermofluorimetric analysis and molecular dynamics simulations suggested that compounds 44 and 49 bind to salicyl-AMP ligase (MbtA), a key enzyme in the mycobactin biosynthetic pathway. To the best of our knowledge, these are the first rationally designed mycobactin inhibitors to demonstrate an excellent in vivo pharmacokinetic profile. In addition, these compounds also exhibited more potent whole-cell efflux pump inhibition than known efflux pump inhibitors verapamil and chlorpromazine. Results from this study pave the way for the development of 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines as a new weapon against superbug-associated AMR challenges.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Harshita Verma
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, India
| | - Pushpendu Jalani
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Swetarka Das
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arunava Dasgupta
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Claire Bagnéris
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Rachael Dickman
- Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University of London, London WC1N 1AX, U.K
| | | | | | - Vadivelan Sankaran
- Eurofins Advinus Limited, 21 & 22, Peenya Industrial area, Bengaluru 560058, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
23
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
24
|
De Siena B, Campolattano N, D'Abrosca G, Russo L, Cantillon D, Marasco R, Muscariello L, Waddell SJ, Sacco M. Characterization of the Mycobacterial MSMEG-3762/63 Efflux Pump in Mycobacterium smegmatis Drug Efflux. Front Microbiol 2020; 11:575828. [PMID: 33343518 PMCID: PMC7744416 DOI: 10.3389/fmicb.2020.575828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies.
Collapse
Affiliation(s)
- Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Nicoletta Campolattano
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianluca D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
25
|
Maitra A, Evangelopoulos D, Chrzastek A, Martin LT, Hanrath A, Chapman E, Hailes HC, Lipman M, McHugh TD, Waddell SJ, Bhakta S. Carprofen elicits pleiotropic mechanisms of bactericidal action with the potential to reverse antimicrobial drug resistance in tuberculosis. J Antimicrob Chemother 2020; 75:3194-3201. [PMID: 32790867 PMCID: PMC7566368 DOI: 10.1093/jac/dkaa307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The rise of antimicrobial drug resistance in Mycobacterium tuberculosis coupled with the shortage of new antibiotics has elevated TB to a major global health priority. Repurposing drugs developed or used for other conditions has gained special attention in the current scenario of accelerated drug development for several global infectious diseases. In a similar effort, previous studies revealed that carprofen, a non-steroidal anti-inflammatory drug, selectively inhibited the growth of replicating, non-replicating and MDR clinical isolates of M. tuberculosis. OBJECTIVES We aimed to reveal the whole-cell phenotypic and transcriptomic effects of carprofen in mycobacteria. METHODS Integrative molecular and microbiological approaches such as resazurin microtitre plate assay, high-throughput spot-culture growth inhibition assay, whole-cell efflux inhibition, biofilm inhibition and microarray analyses were performed. Analogues of carprofen were also synthesized and assessed for their antimycobacterial activity. RESULTS Carprofen was found to be a bactericidal drug that inhibited mycobacterial drug efflux mechanisms. It also restricted mycobacterial biofilm growth. Transcriptome profiling revealed that carprofen likely acts by targeting respiration through the disruption of membrane potential. The pleiotropic nature of carprofen's anti-TB action may explain why spontaneous drug-resistant mutants could not be isolated in practice. CONCLUSIONS This immunomodulatory drug and its chemical analogues have the potential to reverse TB antimicrobial drug resistance, offering a swift path to clinical trials of novel TB drug combinations.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Dimitrios Evangelopoulos
- UCL Centre for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Alina Chrzastek
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Aidan Hanrath
- UCL Centre for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Ellie Chapman
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Marc Lipman
- Royal Free London NHS Foundation Trust, UCL-TB and UCL Respiratory, University College London, London NW3 2QG, UK
| | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
26
|
Meyer CT, Wooten DJ, Lopez CF, Quaranta V. Charting the Fragmented Landscape of Drug Synergy. Trends Pharmacol Sci 2020; 41:266-280. [PMID: 32113653 PMCID: PMC7986484 DOI: 10.1016/j.tips.2020.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Even as the clinical impact of drug combinations continues to accelerate, no consensus on how to quantify drug synergy has emerged. Rather, surveying the landscape of drug synergy reveals the persistence of historical fissures regarding the appropriate domains of conflicting synergy models - fissures impacting all aspects of combination therapy discovery and deployment. Herein we chronicle the impact of these divisions on: (i) the design, interpretation, and reproducibility of high-throughput combination screens; (ii) the performance of algorithms to predict synergistic mixtures; and (iii) the search for higher-order synergistic interactions. Further progress in each of these subfields hinges on reaching a consensus regarding the long-standing rifts in the field.
Collapse
Affiliation(s)
- Christian T Meyer
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - David J Wooten
- Department of Physics, Pennsylvania State University, University Park, PA, USA
| | - Carlos F Lopez
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Vito Quaranta
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|