1
|
Barman K, Goswami P. Recent Advances in Diagnostics and Therapeutic Interventions for Drug-Resistant Malaria. ACS Infect Dis 2025. [PMID: 40326084 DOI: 10.1021/acsinfecdis.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The emergence of drug-resistant malarial parasites has been a growing challenge to medical science to safeguard public health in the malaria-endemic regions of the globe. With time, the parasite develops newer resistance mechanisms to defunct the drug's action one after another. Genetic mutation is the prime weapon parasites rely upon to initiate the resistance mechanism in a case-specific manner, following various strategies such as structural changes in the target protein, metabolic alterations, and tweaking the drug-transported channels. In order to combat these resistances, different approaches have evolved among these developing inhibitors against critical parasite enzymes and metabolic pathways, combinatorial/hybrid drug therapies, exploring new drug targets and analogues of existing drugs, use of resistance-reversal agents, drug-repurposing, gene blocking/altering using RNA interference and CRISPR/Cas systems are prominent. However, the effectiveness of these approaches needs to be earnestly monitored for better management of the disease, which demands the development of a reliable diagnosis technique. Several methodologies have been investigated in search of a suitable diagnosis technique, such as in vivo, in vitro, ex vivo drug efficacy studies, and molecular techniques. A parallel effort to transform the efficient method into an inexpensive and portable diagnosis tool for rapid screening of drug resistance malaria among masses in the societal landscape is advocated. This review gives an insight into the historical perspectives of drug-resistant malaria and the recent developments in malaria diagnosis and antimalarial drug discovery. Efforts have been made to update recent strategies formulated to combat and diagnose drug-resistant malaria. Finally, a concluding remark with a future perspective on the subject has been forwarded.
Collapse
Affiliation(s)
- Kangkana Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Godoy Magalhaes L, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean KJ, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. NPJ DRUG DISCOVERY 2025; 2:3. [PMID: 40066064 PMCID: PMC11892419 DOI: 10.1038/s44386-025-00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
Identification of novel drug targets is a key component of modern drug discovery. While antimalarial targets are often identified through the mechanism of action studies on phenotypically derived inhibitors, this method tends to be time- and resource-consuming. The discoverable target space is also constrained by existing compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction, we systematically assessed the Plasmodium falciparum genome and identified 867 candidate protein targets with evidence of small-molecule binding and blood-stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 27 high-priority antimalarial target candidates. This study also provides a genome-wide data resource for P. falciparum and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | - Daisy Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | | | - Anna Adam
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | - Lauren B. Coulson
- Holistic Drug Discovery and Development (H3D) Centre, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Greg Durst
- Lgenia, Inc., 412 S Maple St, Fortville, IN USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Lisl Esherick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Madeline A. Farringer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA
| | | | - Barbara Forte
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Tiqing Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | - Luma Godoy Magalhaes
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Anil K. Gupta
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Eva S. Istvan
- Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
| | - Tiantian Jiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | - Krittikorn Kumpornsin
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Karen Lobb
- Lgenia, Inc., 412 S Maple St, Fortville, IN USA
| | - Kyle J. McLean
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Igor M. R. Moura
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - N. Connor Payne
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA USA
| | - Andrew Plater
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | | | - Jair L. Siqueira-Neto
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | | | - Robert L. Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | - Rumin Zhang
- Global Health Drug Discovery Institute, Beijing, China
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | | | - Brice Campo
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Beatriz Baragaña
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - James Duffy
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | | | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Case W. McNamara
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute, Beijing, China
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, Pretoria, South Africa
| | | | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Marcus C. S. Lee
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
3
|
Mohd Azam NNSFN, Othman S, Choo YM. Antimalarial Drug Discovery from Natural and Synthetic Sources. Curr Med Chem 2025; 32:87-110. [PMID: 38818916 DOI: 10.2174/0109298673312727240527064833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Malaria remains a significant global health threat despite extensive efforts aimed at its eradication. Numerous challenges persist in eliminating the disease, chief among them being the parasite's ability to mutate, resulting in drug resistance. The discovery of antimalarial drugs has relied on both phenotypic and target-based approaches. While phenotypic screening has identified promising candidates, target-based methods offer a more precise approach by leveraging chemically validated targets and computational tools. Analysis of Plasmodium spp . protein structures reveal druggable targets, offering opportunities for in silico screening. Combining compounds from natural and synthetic sources in a target-based approach accelerates the discovery of new antimalarial agents. This review explores previous breakthroughs in antimalarial drug discovery from natural products and synthetic origins, emphasizing their specific target proteins within Plasmodium species.
Collapse
Affiliation(s)
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
4
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Magalhaes LG, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean K, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. RESEARCH SQUARE 2024:rs.3.rs-5412515. [PMID: 39649165 PMCID: PMC11623766 DOI: 10.21203/rs.3.rs-5412515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction and data mining, we systematically assessed the Plasmodium falciparum genome for proteins amenable to target-based drug discovery, identifying 867 candidate targets with evidence of small molecule binding and blood stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 67 high priority candidates. This study also provides a genome-wide data resource and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anil K Gupta
- Calibr-Skaggs Institute for Innovative Medicines
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiu Cheng
- Global Health Drug Discovery Institute
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Müller J, Boubaker G, Müller N, Uldry AC, Braga-Lagache S, Heller M, Hemphill A. Investigating Antiprotozoal Chemotherapies with Novel Proteomic Tools-Chances and Limitations: A Critical Review. Int J Mol Sci 2024; 25:6903. [PMID: 39000012 PMCID: PMC11241152 DOI: 10.3390/ijms25136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
7
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Wang C, Zhang B, Krüger A, Du X, Visser L, Dömling ASS, Wrenger C, Groves MR. Discovery of Small-Molecule Allosteric Inhibitors of PfATC as Antimalarials. J Am Chem Soc 2022; 144:19070-19077. [PMID: 36195578 PMCID: PMC9585585 DOI: 10.1021/jacs.2c08128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The discovery and
development of new drugs against malaria
remain
urgent. Aspartate transcarbamoylase (ATC) has been suggested to be
a promising target for antimalarial drug development. Here, we describe
a series of small-molecule inhibitors of P. falciparum ATC with low nanomolar binding affinities that selectively bind
to a previously unreported allosteric pocket, thereby inhibiting ATC
activation. We demonstrate that the buried allosteric pocket is located
close to the traditional ATC active site and that reported compounds
maintain the active site of PfATC in its low substrate
affinity/low activity conformation. These compounds inhibit parasite
growth in blood stage cultures at single digit micromolar concentrations,
whereas limited effects were seen against human normal lymphocytes.
To our knowledge, this series represent the first PfATC-specific allosteric inhibitors.
Collapse
Affiliation(s)
- Chao Wang
- XB20 Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Bidong Zhang
- XB20 Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo, Brazil
| | - Xiaochen Du
- XB20 Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Lidia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Alexander S S Dömling
- XB20 Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo, Brazil
| | - Matthew R Groves
- XB20 Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
9
|
Wang C, Krüger A, Du X, Wrenger C, Groves MR. Novel Highlight in Malarial Drug Discovery: Aspartate Transcarbamoylase. Front Cell Infect Microbiol 2022; 12:841833. [PMID: 35310840 PMCID: PMC8931299 DOI: 10.3389/fcimb.2022.841833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria remains one of the most prominent and dangerous tropical diseases. While artemisinin and analogs have been used as first-line drugs for the past decades, due to the high mutational rate and rapid adaptation to the environment of the parasite, it remains urgent to develop new antimalarials. The pyrimidine biosynthesis pathway plays an important role in cell growth and proliferation. Unlike human host cells, the malarial parasite lacks a functional pyrimidine salvage pathway, meaning that RNA and DNA synthesis is highly dependent on the de novo synthesis pathway. Thus, direct or indirect blockage of the pyrimidine biosynthesis pathway can be lethal to the parasite. Aspartate transcarbamoylase (ATCase), catalyzes the second step of the pyrimidine biosynthesis pathway, the condensation of L-aspartate and carbamoyl phosphate to form N-carbamoyl aspartate and inorganic phosphate, and has been demonstrated to be a promising target both for anti-malaria and anti-cancer drug development. This is highlighted by the discovery that at least one of the targets of Torin2 – a potent, yet unselective, antimalarial – is the activity of the parasite transcarbamoylase. Additionally, the recent discovery of an allosteric pocket of the human homology raises the intriguing possibility of species selective ATCase inhibitors. We recently exploited the available crystal structures of the malarial aspartate transcarbamoylase to perform a fragment-based screening to identify hits. In this review, we summarize studies on the structure of Plasmodium falciparum ATCase by focusing on an allosteric pocket that supports the catalytic mechanisms.
Collapse
Affiliation(s)
- Chao Wang
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Xiaochen Du
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Matthew R. Groves, ; Carsten Wrenger,
| | - Matthew R. Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthew R. Groves, ; Carsten Wrenger,
| |
Collapse
|
10
|
Lešnik S, Bren U. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Foods 2021; 11:67. [PMID: 35010191 PMCID: PMC8750736 DOI: 10.3390/foods11010067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/18/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) represents a medicinal plant known for its various health-promoting properties. Its extracts and essential oils exhibit antioxidative, anti-inflammatory, anticarcinogenic, and antimicrobial activities. The main compounds responsible for these effects are the diterpenes carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid. However, surprisingly little is known about the molecular mechanisms responsible for the pharmacological activities of rosemary and its compounds. To discern these mechanisms, we performed a large-scale inverse molecular docking study to identify their potential protein targets. Listed compounds were separately docked into predicted binding sites of all non-redundant holo proteins from the Protein Data Bank and those with the top scores were further examined. We focused on proteins directly related to human health, including human and mammalian proteins as well as proteins from pathogenic bacteria, viruses, and parasites. The observed interactions of rosemary compounds indeed confirm the beforementioned activities, whereas we also identified their potential for anticoagulant and antiparasitic actions. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using both redocking procedures and retrospective metrics.
Collapse
Affiliation(s)
- Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
11
|
Krishnan K, Ziniel P, Li H, Huang X, Hupalo D, Gombakomba N, Guerrero SM, Dotrang T, Lu X, Caridha D, Sternberg AR, Hughes E, Sun W, Bargieri DY, Roepe PD, Sciotti RJ, Wilkerson MD, Dalgard CL, Tawa GJ, Wang AQ, Xu X, Zheng W, Sanderson PE, Huang W, Williamson KC. Torin 2 Derivative, NCATS-SM3710, Has Potent Multistage Antimalarial Activity through Inhibition of P. falciparum Phosphatidylinositol 4-Kinase ( Pf PI4KIIIβ). ACS Pharmacol Transl Sci 2020; 3:948-964. [PMID: 33073193 DOI: 10.1021/acsptsci.0c00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 12/25/2022]
Abstract
Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIβ). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIβ. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIβ with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIβ is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Peter Ziniel
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Hao Li
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Xiuli Huang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Daniel Hupalo
- Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Nita Gombakomba
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thoai Dotrang
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Xiao Lu
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Diana Caridha
- Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Anna R Sternberg
- Departments of Chemistry and of Biochemistry, Cellular and Molecular Biology, Georgetown University, Washington, DC 20057, United States
| | - Emma Hughes
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Wei Sun
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Daniel Y Bargieri
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508, Brazil
| | - Paul D Roepe
- Departments of Chemistry and of Biochemistry, Cellular and Molecular Biology, Georgetown University, Washington, DC 20057, United States
| | - Richard J Sciotti
- Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Matthew D Wilkerson
- Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Gregory J Tawa
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Amy Q Wang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Xin Xu
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Wei Zheng
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Philip E Sanderson
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Wenwei Huang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| |
Collapse
|