1
|
Zhang GD, Gao Y, Yu PH, Zhang C, Guo CH, Ramakrishna S, Long YZ, Zhang J. Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:578. [PMID: 40278445 PMCID: PMC12029198 DOI: 10.3390/nano15080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed structure (double-pronged) avoids the common problem of needle clogging caused by heating. DP-SBS enables high-yield production of water-soluble polymer nanofibers, with a production rate of up to 5.94 g/h, which far exceeds what can be achieved with traditional electrospinning or solution blow spinning. This method is also highly efficient for producing non-water-soluble polymer nanofibers, achieving a production rate of up to 7.91 g/h, the highest reported value to date. Additionally, this approach can be used to produce not only common two-dimensional fiber membranes but also fiber sponges in a single step using the double-pronged airflow system. For the first time, chitosan nanofiber sponges were successfully produced and demonstrated to have excellent hemostatic properties in medical hemostasis. This method can also be extended to the production of other 3D nanomaterials, such as mullite nanofiber sponges, which exhibit outstanding thermal insulation performance at high temperatures.
Collapse
Affiliation(s)
- Guo-Dong Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
| | - Yuan Gao
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
| | - Pi-Hang Yu
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
| | - Chao Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
| | - Chuan-Hui Guo
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore;
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
- State Key Laboratory of Bio-Fibers & Eco-Textiles, Qingdao 266071, China
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; (G.-D.Z.); (Y.G.); (P.-H.Y.); (C.Z.); (C.-H.G.)
| |
Collapse
|
2
|
Fang Z, Wang J, Xie S, Lian Z, Luo Z, Du Y, Zhang X. Advancements in Research and Applications of PP-Based Materials Utilizing Melt-Blown Nonwoven Technology. Polymers (Basel) 2025; 17:1013. [PMID: 40284278 PMCID: PMC12030452 DOI: 10.3390/polym17081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Melt-blown nonwoven materials have demonstrated significant advancements in a multitude of industrial sectors, mainly due to their high production efficiency, extensive specific surface area, and narrow aperture. The demand for melt-blown nonwoven materials has increased further in recent time, particularly in the wake of the novel coronavirus (COVID-19) pandemic. Polypropylene (PP) is extensively used in production and research due to its low cost, low weight, and easy processing, and the melt-blown materials made from it share similar characteristics. We systematically summarize the research advancements of melt-blown nonwoven technology and applications of PP-based melt-blown materials over the last few years. First, the principles and processes of melt-blown nonwoven that govern the production of micro/nano fibers are described. Then the raw materials and process technology of melt-blown are reviewed. After these, we highlight the use of PP-based melt-blown materials in key fields, including media filtration, oil-water separation, heavy metal ions removal, organic pollutants removal and battery separator. Finally, we summary and suggest some potential future research directions of melt-blown nonwoven technology and PP-based melt-blown materials.
Collapse
Affiliation(s)
| | | | | | - Zhouyang Lian
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.F.); (J.W.); (S.X.); (Z.L.); (Y.D.); (X.Z.)
| | | | | | | |
Collapse
|
3
|
Penconek A, Bąkała N, Jackiewicz-Zagórska A, Małolepszy A, Przekop R, Moskal A. Electret Nonwoven Structures for High-Efficiency Air Filtration, Produced Using the Blow Spinning Technique. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6038. [PMID: 39769638 PMCID: PMC11679853 DOI: 10.3390/ma17246038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This study explores the fabrication of electret nonwoven structures for high-efficiency air filtration, utilizing the blow spinning technique. In response to the growing need for effective filtration systems, we aimed to develop biodegradable materials capable of capturing fine particulate matter (PM2.5) without compromising environmental sustainability. Polylactic acid (PLA) was used as the primary polymer, with the addition of SiO2 and MoS2 to enhance the fibers' charge retention and filtration performance. The fibers were charged electrostatically to improve particle capture efficiency. The experimental results showed that fibers containing 5% MoS2 exhibited the highest filtration efficiency, surpassing those with SiO2, despite MoS2 being a semiconductor and SiO2 a dielectric. Furthermore, the addition of MoS2 improved the filtration efficiency across a range of particle sizes (0.2-1 µm) while maintaining a manageable pressure drop. These findings suggest that incorporating MoS2 in electret nonwoven structures can significantly improve filtration performance, making it a promising material for advanced air filtration applications. This study contributes to the development of eco-friendly filtration materials with high performance, essential in reducing exposure to airborne pollutants.
Collapse
Affiliation(s)
| | | | | | | | - Rafał Przekop
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.P.); (N.B.); (A.J.-Z.); (A.M.); (A.M.)
| | | |
Collapse
|
4
|
Goetze JW, Benitez C, Bates FS, Ellison CJ. Porous Melt Blown Poly(butylene terephthalate) Fibers with High Ductility and High-Temperature Structural Stability. ACS Macro Lett 2024; 13:558-564. [PMID: 38635370 DOI: 10.1021/acsmacrolett.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, porous poly(butylene terephthalate) (PBT) fibers were produced by melt blowing cocontinuous blends of PBT and polystyrene (PS) and selectively extracting the interconnected PS domains. Small amounts of hydroxyl terminated PS additives that can undergo transesterification with the ester units in PBT were added to stabilize the cocontinuous structure during melt processing. The resulting fibers are highly ductile and display fine porous structural features, which persist at temperatures over 150 °C. Single fiber tensile testing and electron microscopy are presented to demonstrate the role of rapid quenching and drawing of the melt blowing process in defining the fiber properties. The templated highly aligned pore structure, which is not easily produced in solvent-based fiber spinning methods, leads to remarkable mechanical properties of the porous fibers and overcomes the notoriously poor tensile properties common to other cellular materials like foams.
Collapse
Affiliation(s)
- Joshua W Goetze
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cesar Benitez
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Su W, Chang Z, E Y, Feng Y, Yao X, Wang M, Ju Y, Wang K, Jiang J, Li P, Lei F. Electrospinning and electrospun polysaccharide-based nanofiber membranes: A review. Int J Biol Macromol 2024; 263:130335. [PMID: 38403215 DOI: 10.1016/j.ijbiomac.2024.130335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.
Collapse
Affiliation(s)
- Weiyin Su
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeyu Chang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuyu E
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yawen Feng
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Yao
- International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Meng Wang
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Yunshan Ju
- Lanzhou Biotechnique Development Co., Ltd., Lanzhou 730046, China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
6
|
Wu W, Han W, Sun Y, Yi H, Wang X. Experimental Study of the Airflow Field and Fiber Motion in the Melt-Blowing Process. Polymers (Basel) 2024; 16:469. [PMID: 38399847 PMCID: PMC10892176 DOI: 10.3390/polym16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 02/25/2024] Open
Abstract
The melt-blowing process involves high velocity airflow and fiber motion, which have a significant effect on fiber attenuation. In this paper, the three-dimensional airflow field for a melt-blowing slot die was measured using the hot-wire anemometry in an experiment. The fiber motion was captured online using a high-speed camera. The characteristics of the airflow distribution and fiber motion were analyzed. The results show that the melt-blowing airflow field is asymmetrically distributed. The centerline air velocity is higher than that around it and decays quickly. The maximum airflow velocity exists near the die face, in the range of 130-160 m/s. In the region of -0.3 cm < y < 0.3 cm and 0 < z < 2 cm, the airflow has a high velocity (>100 m/s). As the distance of z reaches 5 cm and 7 cm, the maximum airflow velocity reduces to 70 m/s. The amplitude of fibers is calculated, and it increases with the increase in air dispersion area which has a significant influence on fiber attenuation. At z = 1.5 cm, 2.5 cm, 4 cm, and 5.5 cm, the average fiber amplitudes are 1.05 mm, 1.71 mm, 2.83 mm, and 3.97 mm, respectively. In the vicinity of the die, the fibers move vertically downward as straight segments. With the increase in distance from the spinneret, the fiber appears to bend significantly and forms a fiber loop. The fiber loop morphology affects the velocity of the fiber movement, causing crossover, folding, and bonding of the moving fiber. The study investigated the interaction between the fiber and airflow fields. It indicates that the airflow velocity, velocity difference, and dispersion area can affect the motion of fiber which plays an important role in fiber attenuation during the melt-blowing process.
Collapse
Affiliation(s)
- Wenhan Wu
- College of Material and Textile, Jiaxing University, Jiaxing 314000, China; (W.W.); (H.Y.)
| | - Wanli Han
- College of Material and Textile, Jiaxing University, Jiaxing 314000, China; (W.W.); (H.Y.)
| | - Yafeng Sun
- Jiaxing COETEKS Material Co., Ltd., Jiaxing 314000, China;
| | - Honglei Yi
- College of Material and Textile, Jiaxing University, Jiaxing 314000, China; (W.W.); (H.Y.)
| | - Xinhou Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China;
| |
Collapse
|
7
|
Su X, Jia C, Xiang H, Zhu M. Research progress in preparation, properties, and applications of medical protective fiber materials. APPLIED MATERIALS TODAY 2023; 32:101792. [PMID: 36937335 PMCID: PMC10001160 DOI: 10.1016/j.apmt.2023.101792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Bose S, Padilla V, Salinas A, Ahmad F, Lodge TP, Ellison CJ, Lozano K. Hierarchical Design Strategies to Produce Internally Structured Nanofibers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saptasree Bose
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexandra Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Fariha Ahmad
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
9
|
Asano N, Sugihara S, Suye SI, Fujita S. Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS OMEGA 2022; 7:19997-20005. [PMID: 35721947 PMCID: PMC9202247 DOI: 10.1021/acsomega.2c01798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 06/11/2023]
Abstract
Nanofibrous nonwoven fabrics have attracted attention as porous adsorbents with high specific surface areas for the safe and efficient treatment of spilled organic dyes and petroleum. For this purpose, a method of fabricating porous nanofibers with high specific surface areas would be highly beneficial. In this study, the phase separation in nanofibers electrospun from blended solutions of immiscible polymers [poly(styrene) (PS) and poly(vinylpyrrolidone) (PVP)] was investigated. The removal of PVP as a sacrificial polymer afforded the imprinting of mesopores (40-70 nm) in the PS nanofibers. The effects of solution composition (PS/PVP in N,N-dimethylformamide) on the structure formation in the fibers were investigated. The nanofibers thus obtained could selectively adsorb low-molecular-weight hydrophobic dyes, such as Nile Red and Oil Red O. Thus, it is expected that the combined approach of electrospinning of immiscible polymer blends and phase separation-induced patterning can be applied to the fabrication of functional nanofibers for diverse applications.
Collapse
Affiliation(s)
- Narumi Asano
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Shinji Sugihara
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Department
of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Shin-ichiro Suye
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
10
|
Priyanto A, Hapidin DA, Khairurrijal K. Potential Loading of Virgin Coconut Oil into Centrifugally‐Spun Nanofibers for Biomedical Applications. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aan Priyanto
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
| | - Dian Ahmad Hapidin
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
| | - Khairurrijal Khairurrijal
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
- Institut Teknologi Bandung University Center of Excellence – Nutraceutical, Bioscience and Biotechnology Research Center Jalan Ganesa 10 40132 Bandung Indonesia
| |
Collapse
|
11
|
Merchiers J, Reddy NK, Sharma V. Extensibility-Enriched Spinnability and Enhanced Sorption and Strength of Centrifugally Spun Polystyrene Fiber Mats. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jorgo Merchiers
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Naveen K. Reddy
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
12
|
Priyanto A, Hapidin DA, Suciati T, Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|