1
|
Yu X, Duan Z, Yang H, Peng N, Zhao Z, Liu S. Supramolecular assemblies with aggregation-induced emission for in situ active imaging-guided photodynamic therapy of cancer cells. Talanta 2024; 280:126722. [PMID: 39186860 DOI: 10.1016/j.talanta.2024.126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Photodynamic therapy (PDT) has attracted widespread attention as a novel non-invasive anticancer approach. However, the diminished photosensitivity and limited oxygen exposure caused by the aggregation of traditional photosensitizers greatly impair its overall therapeutic efficacy. Herein, a series of water-soluble aggregation-induced emission luminogens (AIEgens) with triphenylamine as skeleton were synthesized and exhibited bright Near-infrared (NIR) emission and strong reactive oxygen species (ROS) generation. Through host-guest complexation between the multicharged triphenylamine units on AIEgens and cucurbit[10]uril (CB[10]) host molecule, supramolecular nanoassemblies were constructed and exhibited negligible phototoxicity to normal cells due to their limited oxygen contact. In contrast, the efficient release of AIEgens from nanoassemblies through competitive binding of overexpressed peptides in cancer cells with CB[10], enabled the full exploitation of the photosensitivity of AIEgens to produce highly efficient ROS, achieving selective ablation of cancer cells. Moreover, due to the restriction of intramolecular motion (RIM) upon anchored on organelle membranes through electrostatic interactions, the cationic AIEgens with weak fluorescence in physiological environment exhibited intense fluorescence emission, thus realizing imaging-guided PDT. This work may open up an avenue for the development of simple and feasible smart responsive nanomaterials for cancer treatment using supramolecular host-guest complexation strategy.
Collapse
Affiliation(s)
- Xiang Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zongze Duan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hai Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Na Peng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhiyong Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
2
|
Yan Z, Duan Z, Liu S, Zhao Z. Supramolecular PEG-DNA-Ferrocene Nanogels for Synergistically Amplified Chemodynamic Therapy via Cascade Reactions. Biomacromolecules 2024; 25:7123-7133. [PMID: 39401173 DOI: 10.1021/acs.biomac.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Chemodynamic therapy (CDT) has been limited by the tumor microenvironment, such as the low concentration of hydrogen peroxide (H2O2). The combination of therapeutic strategies that increase H2O2 with CDT can synergistically enhance the therapeutic effect. Herein, a novel supramolecular PEG-DNA-ferrocene nanogel that can codeliver glucose oxidase (GOx) and the hypoxia-activable prodrug tirapazamine (TPZ) was developed to synergistically amplify CDT via cascade reactions. The DNA nanogel was size-controllable and DNase I-responsive and exhibited good biocompatibility. Induced by oxygen consumption and H2O2 generation in the catalytic reaction of GOx, the drugs TPZ and ferrocene in the nanogel underwent the hypoxia-based reaction and the Fenton reaction, respectively. The vitro model tests, intracellular ROS test, MTT experiments, and DNA damage assay demonstrated that the H2O2-based cascade Fenton reaction and the hypoxia-based cascade reaction obviously increased ·OH generation and promoted the apoptosis of cancer cells. This cascade supramolecular nanoplatform provided a promising therapeutic strategy to synergistically amplify CDT.
Collapse
Affiliation(s)
- Zhengwei Yan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zongze Duan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiyong Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
3
|
Hu Y, Chen F, Lu H, Tan S, Ke Y, Loh WW, Soh EJH, Taniya A, Tabaglio T, Wee DKB, Ying JY. A splice-switch oligonucleotide loaded self-cleavable DNA nanogel. Chem Commun (Camb) 2024; 60:11516-11519. [PMID: 39308402 DOI: 10.1039/d4cc01942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A self-cleavable DNA nanogel loaded with splice-switch oligonucleotide (SSO) has been developed. Under acidic conditions (pH 5.0), cleavage of the acid-labile chemical linker and generation of the i-motif structure led to the disintegration of the DNA nanogel and efficient release of SSO in its unaltered native state.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- NanoBio Lab, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- NanoBio Lab, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Hongfang Lu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- NanoBio Lab, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, The Proteos, Singapore 138673, Republic of Singapore
| | - Susi Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- NanoBio Lab, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, The Proteos, Singapore 138673, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- School of Interdisciplinary Studies, Lingnan University, Tuen Mun, Hong Kong SAR, China
| | - Wei Wei Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Eugene Jia Hao Soh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Agarwal Taniya
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, The Proteos, Singapore 138673, Republic of Singapore
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, The Proteos, Singapore 138673, Republic of Singapore
| | - Dave Keng Boon Wee
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, The Proteos, Singapore 138673, Republic of Singapore
| | - Jackie Y Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- NanoBio Lab, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Bioengineering and Nanomedicine Department, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
4
|
Bernal-Martínez AM, Bedrina B, Angulo-Pachón CA, Galindo F, Miravet JF, Castelletto V, Hamley IW. pH-Induced conversion of bolaamphiphilic vesicles to reduction-responsive nanogels for enhanced Nile Red and Rose Bengal delivery. Colloids Surf B Biointerfaces 2024; 242:114072. [PMID: 39024718 DOI: 10.1016/j.colsurfb.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Circular Dichroism (CD) spectroscopy reveals substantial molecular reconfigurations accompanying the pH shift. These nanogels enhance the in vitro cellular uptake of the lipophilic dye Nile Red and the ionic photosensitizer Rose Bengal into Human colon adenocarcinoma (HT-29) cells, eliminating the need for organic co-solvents in the former case. Fluorescence measurements with Nile Red as a probe indicate the reduction-sensitive disassembly of the nanogels. In photodynamic therapy (PDT) applications, Rose Bengal-loaded nanogels demonstrate notable improvements, with flow cytometry analysis evidencing increased apoptotic activity in the study with HT-29 cells.
Collapse
Affiliation(s)
- Ana M Bernal-Martínez
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - César A Angulo-Pachón
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain; Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Las Rozas, Madrid 28232, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain.
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| |
Collapse
|
5
|
Yang Y, Huang Y, Chen H, Liu S, Zhang X. An interfacial host-guest inclusion complex regulated supramolecular nanocomposite hydrogel showing tunable mechanical strength, self-healing, strain sensitivity and NIR responsiveness. SOFT MATTER 2024; 20:6648-6654. [PMID: 39109466 DOI: 10.1039/d4sm00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of supramolecular nanocomposite hydrogels with good mechanical properties and multifunctional characteristics remains challenging. The reinforced role of interfacial weak interactions is important for the mechanical properties of nanocomposite hydrogels. Here, a dynamic host-guest inclusion complex from the host molecule CB[7] and guest units was employed to prepare Fe3O4 hybrid supramolecular nanocomposite hydrogels. The results show that the as-obtained hydrogel with a porous structure was prepared. The CB[7]-modified Fe3O4 (Fe3O4@CB[7]) nanoparticles severed as a cross-linker for fabricating the hydrogel's network. By changing the Fe3O4@CB[7] content, their tensile stress ranged from 0.102 to 0.403 MPa and their compression stress ranged (70% compression strain) from 0.059 to 0.775 MPa. By changing the guest units, their tensile stress ranged from 0.3 MPa to 0.403 MPa. The self-healing efficiency of the hydrogels was 99% after 48 h at room temperature. The as-obtained hydrogels with strain sensitivity can be applied for detecting the movement of an elbow and finger. The supramolecular hydrogel exhibits NIR responsiveness, self-healing, injectability, tunable mechanical strength and conductive ability, and can be used in flexible electronics.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yingying Huang
- School of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Hongyi Chen
- School of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xiongzhi Zhang
- School of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
6
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
7
|
Duan Z, Dong G, Yang H, Yan Z, Liu S, Dong Y, Zhao Z. Supramolecular DNA nanogels through host-guest interaction for targeted drug delivery. J Mater Chem B 2024; 12:6137-6145. [PMID: 38842102 DOI: 10.1039/d4tb00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
DNA hydrogels have been demonstrated with the advantages of good stability, easy modification, and extraordinary biocompatibility, which enables their great application prospects in biosensing, tissue engineering, and biomedicine. Based on the host-guest recognition properties of cucurbit[8]uril (CB[8]), we proposed a general method for constructing functional supramolecular DNA nanogels. Guest molecules have been conjugated into the DNA building units, which could be further crosslinked with CB[8] to construct supramolecular DNA nanogels. At the same time, the aptamer has also been modified into the hydrogel network to achieve cell targeting. These supramolecular DNA nanogels have been demonstrated with a controllable size and multiple stimuli responses, in addition to the excellent biocompatibility, stability and good targeting drug transport ability. Such a host-guest based strategy will provide a molecular library as a "toolbox" for the functionalization of DNA nanogels.
Collapse
Affiliation(s)
- Zongze Duan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Guizhi Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hai Yang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zhengwei Yan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhiyong Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
8
|
Ye J, Yang D, Shi C, Zhou F, Wang P. Designer
DNA
Nanostructures and Their Cellular Uptake Behaviors. DNA NANOTECHNOLOGY FOR CELL RESEARCH 2024:375-399. [DOI: 10.1002/9783527840816.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Katopodi T, Petanidis S, Floros G, Porpodis K, Kosmidis C. Hybrid Nanogel Drug Delivery Systems: Transforming the Tumor Microenvironment through Tumor Tissue Editing. Cells 2024; 13:908. [PMID: 38891040 PMCID: PMC11171955 DOI: 10.3390/cells13110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
The future of drug delivery offers immense potential for the creation of nanoplatforms based on nanogels. Nanogels present a significant possibility for pharmaceutical advancements because of their excellent stability and effective drug-loading capability for both hydrophobic and hydrophilic agents. As multifunctional systems, composite nanogels demonstrate the capacity to carry genes, drugs, and diagnostic agents while offering a perfect platform for theranostic multimodal applications. Nanogels can achieve diverse responsiveness and enable the stimuli-responsive release of chemo-/immunotherapy drugs and thus reprogramming cells within the TME in order to inhibit tumor proliferation, progression, and metastasis. In order to achieve active targeting and boost drug accumulation at target sites, particular ligands can be added to nanogels to improve the therapeutic outcomes and enhance the precision of cancer therapy. Modern "immune-specific" nanogels also have extra sophisticated tumor tissue-editing properties. Consequently, the introduction of a multifunctional nanogel-based drug delivery system improves the targeted distribution of immunotherapy drugs and combinational therapeutic treatments, thereby increasing the effectiveness of tumor therapy.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, G. Papanikolaou General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- Third Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece;
| |
Collapse
|
10
|
Hatami H, Rahiman N, Mohammadi M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol 2024; 267:131401. [PMID: 38582467 DOI: 10.1016/j.ijbiomac.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Oligonucleotide-based nanogels, as nascent biomaterials, possess several unique functional, structural, and physicochemical features with excellent drug-loading capacity and high potential for cancer gene therapy. Ongoing studies utilizing oligonucleotide-based nanogels hold great promise, as these cutting-edge nanoplatforms can be elegantly developed with predesigned oligonucleotide sequences and complementary strands which are self-assembled or chemically crosslinked leading to the development of nanogels with predictable shape and tunable size with the desired functional properties. Current paper provides a summary of the properties, preparation methods, and applications of oligonucleotide-based nanogels in cancer therapy. The review is focused on both conventional and modified forms of oligonucleotide-based nanogels, including targeted nanogels, smart release nanogels (responsive to stimuli such as pH, temperature, and enzymes), as well as nanogels used for gene delivery. Their application in cancer immunotherapy and vaccination, photodynamic therapy, and diagnostic applications when combined with other nanoparticles is further discussed. Despite emerging designs in the development of oligonucleotide based nanogels, this field of study is still in its infancy, and clinical translation of these versatile nano-vehicles might face challenges. Hence, extensive research must be performed on in vivo behavior of such platforms determining their biodistribution, biological fate, and acute/subacute toxicity.
Collapse
Affiliation(s)
- Hooman Hatami
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Paul S, Ghosh S, Maity T, Behera PP, Mukherjee A, De P. Photocleavable Visible Light-Triggered Anthraquinone-Derived Water-Soluble Block Copolymer for Peroxynitrite Generation in Cancer Therapy. ACS Macro Lett 2024; 13:288-295. [PMID: 38368530 DOI: 10.1021/acsmacrolett.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
We report a facile stimuli-responsive strategy to generate reactive oxygen and nitrogen species (ROS and RNS) in the biological milieu from a photocleavable water-soluble block copolymer under visible light irradiation (427 nm, 2.25 mW/cm2). An anthraquinone-based water-soluble polymeric nitric oxide (NO) donor (BCPx-NO) is synthesized, which exhibits NO release in the range of 40-65 μM within 10 h of photoirradiation with a half-life of 30-103 min. Additionally, BCPx-NO produces peroxynitrite (ONOO-) and singlet oxygen (1O2) under photoirradiation. To understand the mechanism of NO release and photolysis of the functional group under blue light, we prepared a small-molecule anthraquinone-based N-nitrosamine (NOD). The cellular investigation of the effect of spatiotemporally controlled ONOO- and 1O2 generation from the NO donor polymeric nanoparticles in a triple negative breast adenocarcinoma (MDA-MB-231) under visible light irradiation (white light, 5.83 mW/cm2; total dose 31.5 J/cm2) showed an IC50 of 0.6 mg/mL. The stimuli-responsive strategy using a photolabile water-soluble block copolymer employed to generate ROS and RNS in a biological setting widens the horizon for their potential in cancer therapy.
Collapse
|
12
|
Lee SR, Ong CYJ, Wong JY, Ke Y, Lim JYC, Dong Z, Long Y, Hu Y. Programming the Assembly of Oligo-Adenine with Coralyne into a pH-Responsive DNA Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489480 DOI: 10.1021/acsami.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
External stimuli-responsive DNA hydrogels present interesting platforms for drug loading and triggered release. Typically, drug molecules are encapsulated within three-dimensionally hybridized DNA networks. However, the utilization of drug molecules as cofactors to facilitate the directed assembly of DNA strands into hydrogel frameworks and their subsequent controlled release remains to be explored. Herein, we introduce the guided assembly of oligo-adenine (A-strand) into an acidic pH-responsive DNA hydrogel using an anticancer drug, coralyne (COR), as a low-molecular-weight cofactor. At pH 7, COR orchestrates the assembly of A-strand into an antiparallel duplex configuration cross-linked by A-COR-A units at a stoichiometric ratio of one COR cofactor per four adenine bases, resulting in a DNA hydrogel characterized by A-COR-A duplex bridges. At pH 4-5, the instability of A-COR-A units results in the disintegration of the duplex into its constituent components, leading to the release of COR and simultaneous dissociation of the DNA hydrogel matrix. This study introduces a method by which drug molecules, exemplified here by COR, facilitate the direct formation of a supramolecular cofactor-DNA complex, subsequently leading to the creation of a stimuli-responsive DNA hydrogel. This approach may inspire future investigations into DNA hydrogels tailored for controlled drug encapsulation and release applications.
Collapse
Affiliation(s)
- Shu Rui Lee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Republic of Singapore
| | - Clemen Yu Jie Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Jing Yi Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117543, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yi Long
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
13
|
Hu Y, Gao S, Lu H, Tan S, Chen F, Ke Y, Ying JY. A Self-Immolative DNA Nanogel Vaccine toward Cancer Immunotherapy. NANO LETTERS 2023; 23:9778-9787. [PMID: 37877690 DOI: 10.1021/acs.nanolett.3c02449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The development of precisely engineered vehicles for intracellular delivery and the controlled release of payloads remains a challenge. DNA-based nanomaterials offer a promising solution based on the A-T-G-C alphabet-dictated predictable assembly and high programmability. Herein, we present a self-immolative DNA nanogel vaccine, which can be tracelessly released in the intracellular compartments and activate the immune response. Three building blocks with cytosine-rich overhang domains are designed to self-assemble into a DNA nanogel framework with a controlled size. Two oligo agonists and one antigen peptide are conjugated to the building blocks via an acid-labile chemical linker. Upon internalization into acidic endosomes, the formation of i-motif configurations leads to dissociation of the DNA nanogel vaccine. The acid-labile chemical linker is cleaved, releasing the agonists and antigen in their traceless original form to activate antigen-presenting cells and an immune response. This study presents a novel strategy for constructing delivery platforms for intracellularly stimuli-triggered traceless release of therapeutics.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Shujun Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Hongfang Lu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Susi Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jackie Y Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Bioengineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
14
|
Zhou W, Chen S, Ouyang Y, Huang B, Zhang H, Zhang W, Tian J. A supramolecular nanoplatform for imaging-guided phototherapies via hypoxia tumour microenvironment remodeling. Chem Sci 2023; 14:11481-11489. [PMID: 37886080 PMCID: PMC10599481 DOI: 10.1039/d3sc03797e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as an invasive and promising antitumour treatment, however, the hypoxia in deep tumour tissues and the poor water-solubility of photosensitizers as bottlenecks greatly hinder PDT efficiency. Herein, a tumour microenvironment (TME) activated supramolecular nanoplatform consisting of the pillar[5]arene-based amphiphilic polymer POPD, the phototherapeutic agent Cy7-CN, respiratory medication atovaquone (ATO) and chemotherapeutic drug pyridinyl camptothecin (CPT-Py) was constructed for imaging-guided hypoxia-ameliorated phototherapies. Owing to host-guest interaction, the photochemical and photophysical properties of cyanine were improved exceedingly due to the suppression of π-π stacking. Triggered by the acidic microenvironment in tumour sites, the supramolecular nanoplatform would dissociate and release CPT-Py and ATO which inhibits mitochondria-associated oxidative phosphorylation (OXPHOS) and encourages more oxygen to be used in enhanced PDT. In vitro and in vivo studies verified that the rational combination of ATO-enhanced PDT and PTT overcame the disadvantages of single phototherapy and formed mutual promotion, and simultaneously sensitized chemotherapeutic drugs, which resulted in high tumour inhibition. It is hoped that the supramolecular nanoplatform could shed light on the development of phototherapeutic agents.
Collapse
Affiliation(s)
- Weijie Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hongman Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
15
|
Wei X, Li Y, Cheng X, Wen Y, Yuan W, Chen R, Meng S, Lu X, Yu Z, Xu L, Liu D, Dong Y. Increase Nebulization Stability of Lipid Nanoparticles by Integrating a DNA Supramolecular Hydrogel. ACS Macro Lett 2023:745-750. [PMID: 37207332 DOI: 10.1021/acsmacrolett.3c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nebulized lipid nanoparticles (LNPs) have been considered as potential therapies for genetic disease as well as infectious disease. However, the sensitivity of LNPs to high shear stress during the nebulization process results in loss of the integrity of the nanostructure and the capability of delivering active pharmaceutical ingredients. Herein we have provided a fast extrusion method to prepare liposomes incorporated with a DNA hydrogel (hydrogel-LNPs) to improve the stability of the LNPs. Taking advantage of the good cellular uptake efficiency, we also demonstrated the potential of hydrogel-LNPs in delivering small molecular doxorubicin (Dox) and nucleic acid drugs. This work provides not only highly biocompatible hydrogel-LNPs for aerosol delivery, but also a strategy to regulate the elasticity of LNPs, which will benefit the potential optimization of drug delivery carriers.
Collapse
Affiliation(s)
- Xunan Wei
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingdi Cheng
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixing Wen
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruofan Chen
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Siwen Meng
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xueguang Lu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|