1
|
Takagi K, Murakata H, Hasegawa T. Application of Thiourea/Halogen Bond Donor Cocatalysis in Metal-Free Cationic Polymerization of Isobutyl Vinyl Ether and Styrene Derivatives. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hiroto Murakata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Uchiyama M, Watanabe D, Tanaka Y, Satoh K, Kamigaito M. Asymmetric Cationic Polymerization of Benzofuran through a Reversible Chain-Transfer Mechanism: Optically Active Polybenzofuran with Controlled Molecular Weights. J Am Chem Soc 2022; 144:10429-10437. [PMID: 35658439 PMCID: PMC9204774 DOI: 10.1021/jacs.2c02569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Benzofuran (BzF)
is a prochiral, 1,2-disubstituted, unsymmetric
cyclic olefin that can afford optically active polymers by asymmetric
polymerization, unlike common acyclic vinyl monomers. Although asymmetric
cationic polymerization of BzF was reported by Natta et al. in the
1960s, the polymer structure has not been clarified, and there are
no reports on molecular weight control. Herein, we report dual control
of the optical activity and molecular weight of poly(BzF) using thioether-based
reversible chain-transfer agents for asymmetric cationic polymerization
with β-amino acid derivatives as chiral additives and aluminum
chloride as a catalyst. This asymmetric moderately living cationic
polymerization leads to an increase in molecular weight and specific
optical rotation with monomer conversion. In addition, asymmetric
block polymers consisting of opposite absolute configurational segments
were synthesized using both enantiomers sequentially as chiral additives.
Finally, a comprehensive analysis of the polymerization products and
the model reaction revealed that the optical activity of poly(BzF)
originates from the threo-diisotactic structure, which occurs by regio-,
trans-, and enantioselective propagation.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daichi Watanabe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuhei Tanaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Takagi K, Sakakibara N, Hasegawa T, Hayashi S. Controlled/Living Cationic Polymerization of p-Methoxystyrene Using Tellurium-Based Chalcogen Bonding Catalyst─Discovery of a New Water-Tolerant Lewis Acid Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Nao Sakakibara
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Shuhei Hayashi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Roka N, Kokkorogianni O, Kontoes-Georgoudakis P, Choinopoulos I, Pitsikalis M. Recent Advances in the Synthesis of Complex Macromolecular Architectures Based on Poly(N-vinyl pyrrolidone) and the RAFT Polymerization Technique. Polymers (Basel) 2022; 14:701. [PMID: 35215614 PMCID: PMC8880212 DOI: 10.3390/polym14040701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Recent advances in the controlled RAFT polymerization of complex macromolecular architectures based on poly(N-vinyl pyrrolidone), PNVP, are summarized in this review article. Special interest is given to the synthesis of statistical copolymers, block copolymers, and star polymers and copolymers, along with graft copolymers and more complex architectures. In all cases, PNVP is produced via RAFT techniques, whereas other polymerization methods can be employed in combination with RAFT to provide the desired final products. The advantages and limitations of the synthetic methodologies are discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.R.); (O.K.); (P.K.-G.); (I.C.)
| |
Collapse
|
5
|
|
6
|
Shankel S, Lambert T, Fors B. Moisture tolerant cationic RAFT polymerization of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d2py00780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic reversible addition—fragmentation chain transfer (RAFT) polymerizations have permitted the controlled polymerization of vinyl ethers and select styrenics with predictable molar masses and easily modified thiocarbonylthio chain ends. However, most...
Collapse
|
7
|
Destephen A, González de San Román E, Ballard N. The influence of thiocarbonylthio compounds on the B(C 6F 5) 3 catalyzed cationic polymerization of styrene. Polym Chem 2022. [DOI: 10.1039/d2py00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When applied to the cationic polymerization of styrene, thiocarbonylthio compounds can lead to a dual control mechanism, where degenerative chain transfer occurs concurrent with a reversible addition mechanism.
Collapse
Affiliation(s)
- Aurélie Destephen
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Estibaliz González de San Román
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Chen Y, Zhang L, Jin Y, Lin X, Chen M. Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromol Rapid Commun 2021; 42:e2100148. [PMID: 33969566 DOI: 10.1002/marc.202100148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Indexed: 12/27/2022]
Abstract
While the conventional living cationic polymerization (LCP) provided opportunities to synthesizing well-defined polymers with predetermined molecular weights, desirable chemical structures and narrow dispersity, it is still important to continuously innovate new synthetic methods to meet the increasing requirements in advanced material engineering. Consequently, a variety of novel initiation/controlling systems have be demonstrated recently, which have enabled LCP with spatiotemporal control, broadened scopes of monomers and terminals, more user-friendly operations and reaction conditions, as well as improved thermomechanical properties for obtained polymers. In this work, recent advances in LCP is summarized with emerging initiation/controlling systems, including chemical-initiated/controlled cationic reversible addition-fragmentation chain transfer (RAFT) polymerization, photoinitiated/controlled LCP, electrochemical-controlled LCP, thionyl/selenium halide-initiated LCP, organic acid-assisted LCP, and stereoselective LCP. It is hoped that this summary will provide useful knowledge to people in related fields and stimulate new ideas to promote the development and application of LCP in both academia and industry.
Collapse
Affiliation(s)
- Yinan Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Lin X, Li J, Zhang J, Liu S, Lin X, Pan X, Zhu J, Zhu X. Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polym Chem 2021. [DOI: 10.1039/d0py01691h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a living cationic polymerization of vinyl ethers utilizing electrophilic selenium reagents as initiators and pentacarbonylbromomanganese (Mn(CO)5Br) as the catalyst.
Collapse
Affiliation(s)
- Xia Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiajia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shaoxiang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaofang Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
10
|
Hotta D, Kanazawa A, Aoshima S. tert-Butyl Esters as Potential Reversible Chain Transfer Agents for Concurrent Cationic Vinyl-Addition and Ring-Opening Copolymerization of Vinyl Ethers and Oxiranes. Macromol Rapid Commun 2020; 42:e2000479. [PMID: 33200479 DOI: 10.1002/marc.202000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
tert-Butyl esters are demonstrated to function as chain transfer agents (CTAs) in the cationic copolymerization of vinyl ether (VE) and oxirane via concurrent vinyl-addition and ring-opening mechanisms. In the copolymerization of isopropyl VE and isobutylene oxide (IBO), the IBO-derived propagating species reacts with tert-butyl acetate to generate a copolymer chain with an acetoxy group at the ω-end. This reaction liberates a tert-butyl cation; hence, a polymer chain with a tert-butyl group at the α-end is subsequently generated. Other tert-butyl esters also function as CTAs, and the substituent attached to the carbonyl group affects the chain transfer efficiency. In addition, ethyl acetate does not function as a CTA, which suggests the importance of the liberation of a tert-butyl cation for the chain transfer process. Chain transfer reactions by tert-butyl esters potentially occur reversibly through the reaction of the propagating cation with the ester group at the ω-end of another chain.
Collapse
Affiliation(s)
- Daisuke Hotta
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
11
|
Wang J, Wu J, Chen ZN, Wen D, Chen J, Zheng Q, Xu X, Tu T. Selective mono-N-methylation of nitroarenes with methanol catalyzed by atomically dispersed NHC-Ir solid assemblies. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Kirillov E, Rodygin K, Ananikov V. Recent advances in applications of vinyl ether monomers for precise synthesis of custom-tailored polymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109872] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Boeck PT, Tanaka J, Liu S, You W. Importance of Nucleophilicity of Chain-Transfer Agents for Controlled Cationic Degenerative Chain-Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Parker Thomas Boeck
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shubin Liu
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Uchiyama M, Osumi M, Satoh K, Kamigaito M. Thiol‐Ene Cationic and Radical Reactions: Cyclization, Step‐Growth, and Concurrent Polymerizations for Thioacetal and Thioether Units. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Masahiro Osumi
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2-12-1-H120 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
15
|
Uchiyama M, Osumi M, Satoh K, Kamigaito M. Thiol-Ene Cationic and Radical Reactions: Cyclization, Step-Growth, and Concurrent Polymerizations for Thioacetal and Thioether Units. Angew Chem Int Ed Engl 2020; 59:6832-6838. [PMID: 32040266 DOI: 10.1002/anie.201915132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Thiol-ene cationic and radical reactions were conducted for 1:1 addition between a thiol and vinyl ether, and also for cyclization and step-growth polymerization between a dithiol and divinyl ether. p-Toluenesulfonic acid (PTSA) induced a cationic thiol-ene reaction to generate a thioacetal in high yield, whereas 2,2'-azobisisobutyronitrile resulted in a radical thiol-ene reaction to give a thioether, also in high yield. The cationic and radical addition reactions between a dithiol and divinyl ether with oxyethylene units yielded amorphous poly(thioacetal)s and crystalline poly(thioether)s, respectively. Under high-dilution conditions, the cationic and radical reactions resulted in 16- and 18-membered cyclic thioacetal and thioether products, respectively. Furthermore, concurrent cationic and radical step-growth polymerizations were realized using PTSA under UV irradiation to produce polymers having both thioacetal and thioether linkages in the main chain.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masahiro Osumi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
16
|
Li J, Kerr A, Häkkinen S, Floyd T, Zhang M, Pan X, Zhu X, Perrier S, Zhu J. Manganese carbonyl induced cationic reversible addition–fragmentation chain transfer (C-RAFT) polymerization under visible light. Polym Chem 2020. [DOI: 10.1039/c9py01785b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vinyl ethers were polymerized by C-RAFT polymerization on the basis of halide abstraction reaction of manganese carbonyl and organic halide.
Collapse
Affiliation(s)
- Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Andrew Kerr
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
| | - Satu Häkkinen
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
| | - Thomas Floyd
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
| | - Mengmeng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Sébastien Perrier
- Department of Chemistry and Warwick Medical School
- The University of Warwick
- Coventry CV4 7AL
- UK
- Warwick Medical School
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
17
|
Kim K, Seo MG, Jung J, Ahn J, Chang T, Jeon HB, Paik HJ. Direct introduction of hydroxyl groups in polystyrene chain ends prepared by atom-transfer radical polymerization. Polym J 2019. [DOI: 10.1038/s41428-019-0250-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Kottisch V, O’Leary J, Michaudel Q, Stache EE, Lambert TH, Fors BP. Controlled Cationic Polymerization: Single-Component Initiation under Ambient Conditions. J Am Chem Soc 2019; 141:10605-10609. [PMID: 31240909 PMCID: PMC7189618 DOI: 10.1021/jacs.9b04961] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic polymerizations provide a valuable strategy for preparing macromolecules with excellent control but are inherently sensitive to impurities and commonly require rigorous reagent purification, low temperatures, and strictly anhydrous reaction conditions. By using pentacarbomethoxycyclopentadiene (PCCP) as the single-component initiating organic acid, we found that a diverse library of vinyl ethers can be controllably polymerized under ambient conditions. Additionally, excellent chain-end fidelity is maintained even without rigorous monomer purification. We hypothesize that a tight ion complex between the PCCP anion and the oxocarbenium ion chain end prevents chain-transfer events and enables a polymerization with living characteristics. Furthermore, terminating the polymerization with functional nucleophiles allows for chain-end functionalization in high yields.
Collapse
Affiliation(s)
| | - Jacob O’Leary
- Cornell University, Ithaca, New York 14853, United States
| | | | - Erin E. Stache
- Cornell University, Ithaca, New York 14853, United States
| | | | - Brett P. Fors
- Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Hong M, Chen J, Chen EYX. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem Rev 2018; 118:10551-10616. [PMID: 30350583 DOI: 10.1021/acs.chemrev.8b00352] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new or more sustainable, active, efficient, controlled, and selective polymerization reactions or processes continues to be crucial for the synthesis of important polymers or materials with specific structures or functions. In this context, the newly emerged polymerization technique enabled by main-group Lewis pairs (LPs), termed as Lewis pair polymerization (LPP), exploits the synergy and cooperativity between the Lewis acid (LA) and Lewis base (LB) sites of LPs, which can be employed as frustrated Lewis pairs (FLPs), interacting LPs (ILPs), or classical Lewis adducts (CLAs), to effect cooperative monomer activation as well as chain initiation, propagation, termination, and transfer events. Through balancing the Lewis acidity, Lewis basicity, and steric effects of LPs, LPP has shown several unique advantages or intriguing opportunities compared to other polymerization techniques and demonstrated its broad polar monomer scope, high activity, control or livingness, and complete chemo- or regioselectivity, as well as its unique application in materials chemistry. These advances made in LPP are comprehensively reviewed, with the scope of monomers focusing on heteroatom-containing polar monomers, while the polymerizations mediated by main-group LAs and LBs separately that are most relevant to the LPP are also highlighted or updated. Examples of applying the principles of the LPP and LP chemistry as a new platform for advancing materials chemistry are highlighted, and currently unmet challenges in the field of the LPP, and thus the suggested corresponding future research directions, are also presented.
Collapse
Affiliation(s)
- Miao Hong
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiawei Chen
- Department of Chemistry , Columbia University , 3000 Broadway , New York , New York 10027 , United States
| | - Eugene Y-X Chen
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
20
|
Ciftci M, Yagci Y. Block Copolymers by Mechanistic Transformation from PROAD to Iniferter Process. Macromol Rapid Commun 2018; 39:e1800464. [PMID: 30091815 DOI: 10.1002/marc.201800464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/17/2018] [Indexed: 01/12/2023]
Abstract
A facile strategy for synthesizing block copolymers by the combination of two different living polymerization techniques, namely, photoinduced radical oxidation/addition/deactivation (PROAD) and iniferter processes is described. In the first step, PROAD polymerization of isobutyl vinyl ether using bromotriphenylmethane, dimanganese decacarbonyl (Mn2 (CO)10 ), and diphenyliodonium bromide (Ph2 I+ Br- ) is carried out to yield polymers with triphenylmethyl (trityl) end groups. These prepolymers are used as macroiniferters in thermally induced free radical polymerization of vinyl monomers such as methyl methacrylate, tert-butyl acrylate, and styrene, resulting in the formation of corresponding block copolymers free from homopolymers. The precursor polymer and final block copolymers are characterized by 1 H NMR, FT-IR, GPC, and DSC analyses.
Collapse
Affiliation(s)
- Mustafa Ciftci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.,Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310, Bursa, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.,Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
21
|
Guerre M, Uchiyama M, Lopez G, Améduri B, Satoh K, Kamigaito M, Ladmiral V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym Chem 2018. [DOI: 10.1039/c7py01924f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Block copolymers containing chlorotrifluoroethylene (CTFE) are relatively rare.
Collapse
Affiliation(s)
- Marc Guerre
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Gérald Lopez
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Bruno Améduri
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Vincent Ladmiral
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| |
Collapse
|
22
|
Zhang H, Guo L, Tian Z, Tian M, Zhang S, Xu Z, Gong P, Zheng X, Zhao J, Liu Z. Significant effects of counteranions on the anticancer activity of iridium(iii) complexes. Chem Commun (Camb) 2018; 54:4421-4424. [DOI: 10.1039/c8cc01326h] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rational design of the ligands around transition metals has achieved success in the development of anticancer complexes.
Collapse
|
23
|
Affiliation(s)
- Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
24
|
Kanazawa A, Aoshima S. Cationic Terpolymerization of Vinyl Ethers, Oxetane, and Ketones via Concurrent Vinyl-Addition, Ring-Opening, and Carbonyl-Addition Mechanisms: Multiblock Polymer Synthesis and Mechanistic Investigation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arihiro Kanazawa
- Department of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
25
|
Uchiyama M, Satoh K, McKenzie TG, Fu Q, Qiao GG, Kamigaito M. Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polym Chem 2017. [DOI: 10.1039/c7py01401e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Core cross-linked star polymers were synthesizedviacationic RAFT polymerization and three different approaches in combination with a radical RAFT mechanism.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Thomas G. McKenzie
- Polymer Science Group
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Qiang Fu
- Polymer Science Group
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Greg. G. Qiao
- Polymer Science Group
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|