1
|
Chen Y, Yang T, Lin Y, Evans CM. Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers. Nat Commun 2025; 16:2451. [PMID: 40069217 PMCID: PMC11897142 DOI: 10.1038/s41467-025-57784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl-L-glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (Tg) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices. This morphology yields a 1.5 order of magnitude higher Tg- and volume fraction-normalized ionic conductivity and a morphology factor f > 0.8 compared to less ordered BCPs with f < 0.05 and f = 2/3 for ideal lamellae. These results highlight the critical role of helical structure in optimizing ion transport, offering a design strategy for high-performance solid electrolytes.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tianjian Yang
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Christopher M Evans
- Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
3
|
Aoki D, Yasuda K, Arimitsu K. Toughening Ionic Polymer Using Bulky Alkylammonium Counterions and Comb Architecture. ACS Macro Lett 2023; 12:462-467. [PMID: 36962000 PMCID: PMC10116644 DOI: 10.1021/acsmacrolett.2c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Ionic interactions in ionic polymers, such as ionomers, polyelectrolytes, and polyampholytes, contribute to toughness in systems with high mobility and active ion dynamics, such as hydrogels and elastomers. However, it remains challenging to toughen rigid polymers through ionic interactions without lowering their elastic modulus through plasticization. Here, we present a strategy for toughening without sacrificing the elastic modulus by combining a comb polymer with bulky ammonium counterions. We designed and synthesized ionic comb polymers with oligoethylene glycol side chains and carboxylic acids in each monomer unit of the polynorbornene backbone, neutralized by trialkylamines, ranging from ethyl to octyl. The counterion size in ionic comb polymers influenced the mechanical properties of tensile testing─not the elongation at break and the elastic modulus but the ultimate strength and toughness. The ionic comb polymer containing heptylammonium counterions displayed the highest toughness of 77 MJ m-3. Tensile studies at various strain rates demonstrated a rate-dependent difference between heptyl- and octylammonium counterions. This result suggests that the heptylammonium counterion acted as a sacrificial bond by providing a moderate dissociation rate that was slightly slower than that of the octylammonium counterion, leading to toughening.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kento Yasuda
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Arimitsu
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Xue B, Zhao X, Yin J. Electrorheological and dielectric analysis of self-crosslinked poly(ionic liquid)s with different flexible chain spacer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Ionic Liquid Confined in MOF/Polymerized Ionic Network Core-Shell Host as a Solid Electrolyte for Lithium Batteries. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Jain SK, Rawlings D, Antoine S, Segalman RA, Han S. Confinement Promotes Hydrogen Bond Network Formation and Grotthuss Proton Hopping in Ion-Conducting Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheetal K. Jain
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Dakota Rawlings
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ségolène Antoine
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Lindenmeyer KM, Miller KM. Thiol‐yne photoclick polymerization as a method for preparing
imidazolium‐containing
ionene networks. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kevin M. Miller
- Department of Chemistry Murray State University Murray Kentucky USA
| |
Collapse
|
8
|
Zhao Q, Bennington P, Nealey PF, Patel SN, Evans CM. Ion Specific, Thin Film Confinement Effects on Conductivity in Polymerized Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Peter Bennington
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Shrayesh N. Patel
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | | |
Collapse
|
9
|
Jing BB, Mata P, Zhao Q, Evans CM. Effects of crosslinking density and Lewis acidic sites on conductivity and viscoelasticity of dynamic network electrolytes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brian B. Jing
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Illinois USA
- Beckman Institute of Science and Technology University of Illinois at Urbana‐Champaign Illinois USA
| | - Patricia Mata
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Illinois USA
| | - Qiujie Zhao
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Illinois USA
| | - Christopher M. Evans
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Illinois USA
- Beckman Institute of Science and Technology University of Illinois at Urbana‐Champaign Illinois USA
| |
Collapse
|
10
|
Influence of counteranion and humidity on the thermal, mechanical and conductive properties of covalently crosslinked ionenes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhao Q, Evans CM. Effect of Molecular Weight on Viscosity Scaling and Ion Transport in Linear Polymerized Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qiujie Zhao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Depoorter J, Yan X, Zhang B, Sudre G, Charlot A, Fleury E, Bernard J. All poly(ionic liquid) block copolymer nanoparticles from antagonistic isomeric macromolecular blocks via aqueous RAFT polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00698j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All-poly(ionic liquid) block copolymer nanoparticles are prepared by aqueous RAFT PISA using a couple of isomeric ionic liquid monomers leading to macromolecular building blocks with antagonistic solution behavior in water.
Collapse
Affiliation(s)
| | - Xibo Yan
- Univ Lyon
- INSA Lyon
- CNRS
- IMP UMR 5223
- Villeurbanne
| | - Biao Zhang
- Univ Lyon
- INSA Lyon
- CNRS
- IMP UMR 5223
- Villeurbanne
| | - Guillaume Sudre
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- IMP UMR 5223
- Villeurbanne
| | | | | | | |
Collapse
|
13
|
Schoustra SK, Groeneveld T, Smulders MMJ. The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networks. Polym Chem 2021. [DOI: 10.1039/d0py01555e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polarity-induced effects in dynamic covalent polyimine CANs were studied, revealing a three-step stress relaxation process.
Collapse
Affiliation(s)
- Sybren K. Schoustra
- Laboratory of Organic Chemistry
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
| | - Timo Groeneveld
- Laboratory of Organic Chemistry
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
| | | |
Collapse
|
14
|
Shan N, Shen C, Evans CM. Critical Role of Ion Exchange Conditions on the Properties of Network Ionic Polymers. ACS Macro Lett 2020; 9:1718-1725. [PMID: 35653674 DOI: 10.1021/acsmacrolett.0c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic polymers are important in a wide range of applications and can exhibit widely different properties depending on the ionic species. In the case of single ion conducting polymers, where one charge is attached to the backbone or as a side group, ion exchange is performed to control the mobile species. While the conditions are often specified, the final ion content is not always quantified, and there are no clear criteria for what concentration of salt is needed in the exchange. A series of ammonium network ionic polymers with different precise carbon spacers (C4-C7) between ionic junctions were synthesized as model systems to understand how the ion exchange conditions impact the resultant polymer properties. The initial networks with free bromide anions were exchanged with 1.5, 3, or 10 equiv of lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt in solution. For networks with seven carbons between cross-links, increasing the LiTFSI concentration led to an increase in ion exchange efficiency from 83.6 to 97.6 mol %. At the highest conversion, the C7 network showed a 4 °C decrease in glass transition temperature (Tg), a 50 °C increase in degradation temperature, 12-fold lower water uptake from air, and a greater than 10-fold increase in conductivity at 90 °C. These results illustrate that properties such as Tg are less sensitive to residual ion impurities, whereas the conductivity is highly dependent on the final exchange conversion.
Collapse
Affiliation(s)
- Naisong Shan
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengtian Shen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Choi UH, Price TL, Schoonover DV, Xie R, Gibson HW, Colby RH. Role of Chain Polarity on Ion and Polymer Dynamics: Molecular Volume-Based Analysis of the Dielectric Constant for Polymerized Norbornene-Based Ionic Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- U Hyeok Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| | - Terry L. Price
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel V. Schoonover
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Renxuan Xie
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry W. Gibson
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Ralph H. Colby
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Chen X, Spiering GA, Slebodnick C, Long TE, Moore RB. Deciphering the 3D Microstructures of a Doubly Charged Homopolymer through a Complementary Correlation of Monomer Crystallography and Polymer Powder X-ray Diffraction. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Chen
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Glenn A. Spiering
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E. Long
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert B. Moore
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Shen C, Zhao Q, Shan N, Jing BB, Evans CM. Conductivity–modulus–
T
g
relationships in solvent‐free, single lithium ion conducting network electrolytes. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chengtian Shen
- Department of Chemistry University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Qiujie Zhao
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Naisong Shan
- Department of Chemistry University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Brian B. Jing
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Christopher M. Evans
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
18
|
Schauser NS, Grzetic DJ, Tabassum T, Kliegle GA, Le ML, Susca EM, Antoine S, Keller TJ, Delaney KT, Han S, Seshadri R, Fredrickson GH, Segalman RA. The Role of Backbone Polarity on Aggregation and Conduction of Ions in Polymer Electrolytes. J Am Chem Soc 2020; 142:7055-7065. [DOI: 10.1021/jacs.0c00587] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wojnarowska Z, Musiał M, Cheng S, Drockenmuller E, Paluch M. Fast secondary dynamics for enhanced charge transport in polymerized ionic liquids. Phys Rev E 2020; 101:032606. [PMID: 32289964 DOI: 10.1103/physreve.101.032606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/21/2020] [Indexed: 11/07/2022]
Abstract
Segmental dynamics is considered as a major factor governing ionic conductivity of polymerized ionic liquids (PILs), envisioned as potential electrolytes in fuel cells and batteries. Our dielectric studies performed in T-P thermodynamic space on ionene, composed of the positively charged polymer backbone and freely moving anions, indicate that other relaxation modes, completely ignored so far, can affect the charge transport in PILs as well. We found that fast mobility manifested by a secondary β process promotes segmental dynamics and thereby increases ionic conductivity making the studied material a first coupled PIL of superionic properties. The molecular mechanism underlying such a β process has been identified as Johari-Goldstein relaxation giving experimental proof that fast secondary relaxations of intermolecular origin exist also in PILs and thereby reveal a universal character.
Collapse
Affiliation(s)
- Z Wojnarowska
- Institute of Physics, the University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M Musiał
- Institute of Physics, the University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - S Cheng
- Institute of Physics, the University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - E Drockenmuller
- Université Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères UMR 5223, F-69003 Lyon, France
| | - M Paluch
- Institute of Physics, the University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
20
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|