1
|
Keane DP, Constantine CJ, Mellor MD, Poling-Skutvik R. Nanoparticle transport in biomimetic polymer-linked emulsions. AIChE J 2024; 70:e18307. [PMID: 40017798 PMCID: PMC11867629 DOI: 10.1002/aic.18307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/31/2023] [Indexed: 03/01/2025]
Abstract
The ability of nanoparticles to penetrate and transport through soft tissues is essential to delivering therapeutics to treat diseases or signaling agents for advanced imaging and sensing. Nanoparticle transport in biological systems, however, is challenging to predict and control due to the physicochemical complexity of tissues and biological fluids. Here, we demonstrate that nanoparticles suspended in a novel class of soft matter-polymer-linked emulsions (PLEs)-exhibit characteristics essential for mimicking transport in biological systems, including subdiffusive dynamics, non-Gaussian displacement distributions, and decoupling of dynamics from material viscoelasticity. Using multiple particle tracking, we identify the physical mechanisms underlying this behavior, which we attribute to a coupling of nanoparticle dynamics to fluctuations in the local network of polymer-linked droplets. Our findings demonstrate the potential of PLEs to serve as fully synthetic mimics of biological transport.
Collapse
Affiliation(s)
- Daniel P Keane
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Colby J Constantine
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Matthew D Mellor
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| |
Collapse
|
2
|
Mariya S, Barr JJ, Sunthar P, Prakash JR. Universal scaling of the diffusivity of dendrimers in a semidilute solution of linear polymers. SOFT MATTER 2024; 20:993-1008. [PMID: 38197233 DOI: 10.1039/d3sm01190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The static and dynamic properties of dendrimers in semidilute solutions of linear chains of comparable size are investigated using Brownian dynamics simulations. The radius of gyration and diffusivity of a wide variety of low generation dendrimers and linear chains in solution follow universal scaling laws independent of their topology. Analysis of the shape functions and internal density of dendrimers shows that they are more spherical than linear chains and have a dense core. At intermediate times, dendrimers become subdiffusive, with an exponent higher than that previously reported for nanoparticles in semidilute polymer solutions. The long-time diffusivity of dendrimers does not follow theoretical predictions for nanoparticles. We propose a new scaling law for the long-time diffusion coefficients of dendrimers which accounts for the fact that, unlike nanoparticles, dendrimers shrink with an increase in background solution concentration. Analysis of the properties of a special case of a higher functionality dendrimer shows a transition from polymer-like to nanoparticle-like behaviour.
Collapse
Affiliation(s)
- Silpa Mariya
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - P Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - J Ravi Prakash
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
3
|
Lyu K, Zhao Y, Zhang M, Tang J, Zhang J, Liu Y, Bian X, Chen X, Chen H, Wang D. Tracking of Protein Adsorption on Poly(l-lactic acid) Film Surfaces: The Role of Molar Mass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13534-13545. [PMID: 37712535 DOI: 10.1021/acs.langmuir.3c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Poly(l-lactic acid) (PLLA) has been extensively utilized as a biomaterial for various biomedical applications. The first and one of the most critical steps upon contact with biological fluids is the adsorption of proteins on the material's surface. Understanding the behavior of protein adsorption is vital for guiding the synthesis and preparation of PLLA for biomedical purposes. In this study, total internal reflection fluorescence microscopy was employed to investigate the adsorption of human serum albumin (HSA) on PLLA films with different molar masses. We found that molar mass affects HSA adsorption in such a way that it affects only the adsorption rate constants, but not the desorption rate constants. Additionally, we observed that HSA adsorption is spatially heterogeneous and exhibits many strong binding sites regardless of the molar mass of the PLLA films. We found that the free volume of PLLA plays a crucial role in determining its water uptake capacity and surface hydration, consequently impacting the adsorption of HSA.
Collapse
Affiliation(s)
- Kaixuan Lyu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanlong Liu
- Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Moncure PJ, Simon ZC, Millstone JE, Laaser JE. Relationship between Gel Mesh and Particle Size in Determining Nanoparticle Diffusion in Hydrogel Nanocomposites. J Phys Chem B 2022; 126:4132-4142. [PMID: 35609342 DOI: 10.1021/acs.jpcb.2c00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The diffusion of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) was measured in polyacrylamide gels with various cross-linking densities. The molecular weight of the PEGSH ligand and particle core size were both varied to yield particles with hydrodynamic diameters ranging from 7 to 21 nm. The gel mesh size was varied from approximately 36 to 60 nm by controlling the cross-linking density of the gel. Because high-molecular-weight ligands are expected to yield more compressible particles, we expected the diffusion constants of the NPs to depend on their hard/soft ratios (where the hard component of the particle consists of the particle core and the soft component of the particle consists of the ligand shell). However, our measurements revealed that NP diffusion coefficients resulted primarily from changes in the overall hydrodynamic diameter and not the ratio of particle core size to ligand size. Across all particles and gels, we found that the diffusion coefficient was well predicted by the confinement ratio calculated from the diameter of the particle and an estimate of the gel mesh size obtained from the elastic blob model and was well described using a hopping model for nanoparticle diffusion. These results suggest that the elastic blob model provides a reasonable estimate of the mesh size that particles "see" as they diffuse through the gel. This work brings new insights into the factors that dictate how NPs move through polymer gels and will inform the development of hydrogel nanocomposites for applications such as drug delivery in heterogeneous, viscoelastic biological materials.
Collapse
Affiliation(s)
- Paige J Moncure
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zoe C Simon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Chen Y, Xu H, Ma Y, Liu J, Zhang L. Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts. Phys Chem Chem Phys 2022; 24:11322-11335. [PMID: 35485911 DOI: 10.1039/d2cp00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity D decreases with increasing grafting density Σg, grafted chain length Ng, and matrix chain length Nm. This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing Σg, the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in D. At extremely high Σg, the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing Ng, both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by D ∼ N-γg with 0.5 < γ < 1. Increasing Nm would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where D ∼ Nm-1. These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yangwei Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Feric TG, Hamilton ST, Cantillo NM, Imel AE, Zawodzinski TA, Park AHA. Dynamic Mixing Behaviors of Ionically Tethered Polymer Canopy of Nanoscale Hybrid Materials in Fluids of Varying Physical and Chemical Properties. J Phys Chem B 2021; 125:9223-9234. [PMID: 34370476 DOI: 10.1021/acs.jpcb.1c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An emerging area of sustainable energy and environmental research is focused on the development of novel electrolytes that can increase the solubility of target species and improve subsequent reaction performance. Electrolytes with chemical and structural tunability have allowed for significant advancements in flow batteries and CO2 conversion integrated with CO2 capture. Liquid-like nanoparticle organic hybrid materials (NOHMs) are nanoscale fluids that are composed of inorganic nanocores and an ionically tethered polymeric canopy. NOHMs have been shown to exhibit enhanced conductivity making them promising for electrolyte applications, though they are often challenged by high viscosity in the neat state. In this study, a series of binary mixtures of NOHM-I-HPE with five different secondary fluids, water, chloroform, toluene, acetonitrile, and ethyl acetate, were prepared to reduce the fluid viscosity and investigate the effects of secondary fluid properties (e.g., hydrogen bonding ability, polarity, and molar volume) on their transport behaviors, including viscosity and diffusivity. Our results revealed that the molecular ratio of secondary fluid to the ether groups of Jeffamine M2070 (λSF) was able to describe the effect that secondary fluid has on transport properties. Our findings also suggest that in solution, the Jeffamine M2070 molecules exist in different nanoscale environments, where some are more strongly associated with the nanoparticle surface than others, and the conformation of the polymer canopy was dependent on the secondary fluid. This understanding of the polymer conformation in NOHMs can allow for the better design of an electrolyte capable of capturing and releasing small gaseous or ionic species.
Collapse
Affiliation(s)
| | | | - Nelly M Cantillo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam E Imel
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States.,Energy Storage and Membrane Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
7
|
Unni M, Savliwala S, Partain BD, Maldonado-Camargo L, Zhang Q, Narayanan S, Dufresne EM, Ilavsky J, Grybos P, Koziol A, Maj P, Szczygiel R, Allen KD, Rinaldi-Ramos CM. Fast nanoparticle rotational and translational diffusion in synovial fluid and hyaluronic acid solutions. SCIENCE ADVANCES 2021; 7:eabf8467. [PMID: 34193423 PMCID: PMC8245030 DOI: 10.1126/sciadv.abf8467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/17/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles are under investigation as diagnostic and therapeutic agents for joint diseases, such as osteoarthritis. However, there is incomplete understanding of nanoparticle diffusion in synovial fluid, the fluid inside the joint, which consists of a mixture of the polyelectrolyte hyaluronic acid, proteins, and other components. Here, we show that rotational and translational diffusion of polymer-coated nanoparticles in quiescent synovial fluid and in hyaluronic acid solutions is well described by the Stokes-Einstein relationship, albeit with an effective medium viscosity that is much smaller than the macroscopic low shear viscosity of the fluid. This effective medium viscosity is well described by an equation for the viscosity of dilute polymer chains, where the additional viscous dissipation arises because of the presence of the polymer segments. These results shed light on the diffusive behavior of polymer-coated inorganic nanoparticles in complex and crowded biological environments, such as in the joint.
Collapse
Affiliation(s)
- Mythreyi Unni
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Shehaab Savliwala
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Eric M Dufresne
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Pawel Grybos
- AGH University of Science and Technology, av. Mickiewicza 30, Kraków 30-059, Poland
| | - Anna Koziol
- AGH University of Science and Technology, av. Mickiewicza 30, Kraków 30-059, Poland
| | - Piotr Maj
- AGH University of Science and Technology, av. Mickiewicza 30, Kraków 30-059, Poland
| | - Robert Szczygiel
- AGH University of Science and Technology, av. Mickiewicza 30, Kraków 30-059, Poland
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Dhand AP, Poling-Skutvik R, Osuji CO. Simple production of cellulose nanofibril microcapsules and the rheology of their suspensions. SOFT MATTER 2021; 17:4517-4524. [PMID: 33710229 DOI: 10.1039/d1sm00225b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microcapsules are commonly used in applications ranging from therapeutics to personal care products due to their ability to deliver encapsulated species through their porous shells. Here, we demonstrate a simple and scalable approach to fabricate microcapsules with porous shells by interfacial complexation of cellulose nanofibrils and oleylamine, and investigate the rheological properties of suspensions of the resulting microcapsules. The suspensions of neat capsules are viscous liquids whose viscosity increases with volume fraction according to a modified Kreiger-Dougherty relation with a maximum packing fraction of 0.74 and an intrinsic viscosity of 4.1. When polyacrylic acid (PAA) is added to the internal phase of the microcapsules, however, the suspensions become elastic and display yield stresses with power-law dependencies on capsule volume fraction and PAA concentration. The elasticity appears to originate from associative microcapsule interactions induced by PAA that is contained within and incorporated into the microcapsule shell. These results demonstrate that it is possible to tune the rheological properties of microcapsule suspensions by changing only the composition of the internal phase, thereby providing a novel method to tailor complex fluid rheology.
Collapse
Affiliation(s)
- Abhishek P Dhand
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Chen Y, Ma R, Qian X, Zhang R, Huang X, Xu H, Zhou M, Liu J. Nanoparticle Mobility within Permanently Cross-Linked Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xifu Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Ningbo Detai Chemical Co., Ltd., Ningbo 315204, China
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Kulshreshtha A, Jayaraman A. Dispersion and Aggregation of Polymer Grafted Particles in Polymer Nanocomposites Driven by the Hardness and Size of the Grafted Layer Tuned by Attractive Graft–Matrix Interactions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Colburn Laboratory, Newark. Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Colburn Laboratory, Newark. Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Parisi D, Truzzolillo D, Deepak VD, Gauthier M, Vlassopoulos D. Transition from Confined to Bulk Dynamics in Symmetric Star–Linear Polymer Mixtures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS Université de Montpellier, 34095 Montpellier, France
| | - Vishnu D. Deepak
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | | |
Collapse
|