1
|
Kim JH, Kim J, Ma J, Cho JH, Jeong J, Iimura S, Jang HW, Kim SY. Spontaneous Metal-Chelation Strategy for Highly Dense Ni Single-Atom Catalysts with Asymmetric Coordination in CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409481. [PMID: 39668429 DOI: 10.1002/smll.202409481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Developing metal-nitrogen-doped carbon single-atom catalysts (M-NC SACs) with high loadings for the electrochemical CO2 reduction reaction (eCO2RR) remains challenging owing to the risk of metal aggregation. Herein, the study presents a facile strategy for synthesizing M-NC SACs using metal-chelating ligands, eliminating the need for additional processing steps. Specifically, using ethylenediaminetetraacetic acid as a strong metal-chelating ligand, the formation of Ni nanoparticles is effectively prevented and a high loading of ≈2.7 wt.% is achieved, leading to the development of high-loading Ni SACs. The resulting catalysts exhibit a high CO faradaic efficiency (FECO) of 96.6% and CO partial current density of -120.2 mA cm-2 and retain a FECO over 90% in a broad potential range of -0.4 to -0.9 V versus the reversible hydrogen electrode. Furthermore, theoretical calculations indicate that the asymmetric Ni-N3C1 local coordination structure within the catalyst reveals an optimal balance between *COOH formation and *CO desorption, which enhances the activity for eCO2RR to CO. This study offers an efficient strategy to suppress metal nanoparticle formation while simultaneously improving the metal loading in M-NC SACs.
Collapse
Affiliation(s)
- Jae Hak Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joonhee Ma
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jin Hyuk Cho
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaemin Jeong
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soshi Iimura
- Research Center for Energy and Environmental Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Hariharan S, Kinge S, Visscher L. Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective. J Chem Inf Model 2025; 65:472-511. [PMID: 39611724 PMCID: PMC11776058 DOI: 10.1021/acs.jcim.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Heterogeneous catalysis plays a critical role in many industrial processes, including the production of fuels, chemicals, and pharmaceuticals, and research to improve current catalytic processes is important to make the chemical industry more sustainable. Despite its importance, the challenge of identifying optimal catalysts with the required activity and selectivity persists, demanding a detailed understanding of the complex interactions between catalysts and reactants at various length and time scales. Density functional theory (DFT) has been the workhorse in modeling heterogeneous catalysis for more than three decades. While DFT has been instrumental, this review explores the application of quantum computing algorithms in modeling heterogeneous catalysis, which could bring a paradigm shift in our approach to understanding catalytic interfaces. Bridging academic and industrial perspectives by focusing on emerging materials, such as multicomponent alloys, single-atom catalysts, and magnetic catalysts, we delve into the limitations of DFT in capturing strong correlation effects and spin-related phenomena. The review also presents important algorithms and their applications relevant to heterogeneous catalysis modeling to showcase advancements in the field. Additionally, the review explores embedding strategies where quantum computing algorithms handle strongly correlated regions, while traditional quantum chemistry algorithms address the remainder, thereby offering a promising approach for large-scale heterogeneous catalysis modeling. Looking forward, ongoing investments by academia and industry reflect a growing enthusiasm for quantum computing's potential in heterogeneous catalysis research. The review concludes by envisioning a future where quantum computing algorithms seamlessly integrate into research workflows, propelling us into a new era of computational chemistry and thereby reshaping the landscape of modeling heterogeneous catalysis.
Collapse
Affiliation(s)
- Seenivasan Hariharan
- Institute
for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Sachin Kinge
- Toyota
Motor Europe, Materials Engineering Division, Hoge Wei 33, B-1930 Zaventum, Belgium
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hua N, Zhang C, Zhang W, Yao X, Qian H. Development and application of ordered membrane electrode assemblies for water electrolysis. Chem Commun (Camb) 2024; 61:232-246. [PMID: 39629508 DOI: 10.1039/d4cc05300a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With the development of hydrogen energy, there has been increasing attention toward fuel cells and water electrolysis. Among them, the zero-gap membrane electrode assembly (MEA) serves as an important triple-phase reaction site that determines the performance and efficiency of the reaction system. The development of efficient and durable MEAs plays a crucial role in the development of hydrogen energy. Consequently, a great deal of effort has been devoted to developing ordered MEAs that can effectively increase catalyst utilization, maximize triple-phase boundaries, enhance mass transfer and improve stability. The research progress of ordered MEAs in recent advances is highlighted, involving hydrogen fuel cells and low temperature water electrolysis technology. Firstly, the fundamental scientific understanding and structural characteristics of MEAs based on one-dimensional nanostructures such as nanowires, nanotubes and nanofibers are summarized. Then, the classification, preparation and development of ordered MEAs based on three-dimensional structures are summarized. Finally, this review presents current challenges and proposes future research on ordered MEAs and offers potential solutions to overcome these obstacles.
Collapse
Affiliation(s)
- Nian Hua
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Chuanyan Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Xinyun Yao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Huidong Qian
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Tamtaji M, Kwon S, Musgrave CB, Goddard WA, Chen G. Reaction Mechanism of Rapid CO Electroreduction to Propylene and Cyclopropane (C 3+) over Triple Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50567-50575. [PMID: 38919050 DOI: 10.1021/acsami.4c06257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The carbon monoxide reduction reaction (CORR) toward C2+ and C3+ products such as propylene and cyclopropane can not only reduce anthropogenic emissions of CO and CO2 but also produce value-added organic chemicals for polymer and pharmaceutical industries. Here, we introduce the concept of triple atom catalysts (TACs) that have three intrinsically strained and active metal centers for reducing CO to C3+ products. We applied grand canonical potential kinetics (GCP-K) to screen 12 transition metals (M) supported by nitrogen-doped graphene denoted as M3N7, where M stands for Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au. We sought catalysts with favorable CO binding, hydrogen binding, and C-C dimerization energetics, identifying Fe3N7 and Ir3N7 as the best candidates. We then studied the entire reaction mechanism from CO to C3H6 and C2H4 as a function of applied potential via, respectively, 12-electron and 8-electron transfer pathways on Fe3N7 and Ir3N7. Density functional theory (DFT) predicts an overpotential of 0.17 VRHE for Fe3N7 toward propylene and an overpotential of 0.42 VRHE toward cyclopropane at 298.15 K and pH = 7. Also, DFT predicts an overpotential of 0.15 VRHE for Ir3N7 toward ethylene. This work provides fundamental insights into the design of advanced catalysts for C2+ and C3+ synthesis at room temperature.
Collapse
Affiliation(s)
- Mohsen Tamtaji
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR 999077, China
| | - Soonho Kwon
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles B Musgrave
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - GuanHua Chen
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR 999077, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Tamtaji M, Kim MG, WANG J, Galligan PR, Zhu H, Hung F, Xu Z, Zhu Y, Luo Z, Goddard WA, Chen G. A High-Entropy Single-Atom Catalyst Toward Oxygen Reduction Reaction in Acidic and Alkaline Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309883. [PMID: 38687196 PMCID: PMC11234427 DOI: 10.1002/advs.202309883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/21/2024] [Indexed: 05/02/2024]
Abstract
The design of high-entropy single-atom catalysts (HESAC) with 5.2 times higher entropy compared to single-atom catalysts (SAC) is proposed, by using four different metals (FeCoNiRu-HESAC) for oxygen reduction reaction (ORR). Fe active sites with intermetallic distances of 6.1 Å exhibit a low ORR overpotential of 0.44 V, which originates from weakening the adsorption of OH intermediates. Based on density functional theory (DFT) findings, the FeCoNiRu-HESAC with a nitrogen-doped sample were synthesized. The atomic structures are confirmed with X-ray photoelectron spectroscopy (XPS), X-ray absorption (XAS), and scanning transmission electron microscopy (STEM). The predicted high catalytic activity is experimentally verified, finding that FeCoNiRu-HESAC has overpotentials of 0.41 and 0.37 V with Tafel slopes of 101 and 210 mVdec-1 at the current density of 1 mA cm-2 and the kinetic current densities of 8.2 and 5.3 mA cm-2, respectively, in acidic and alkaline electrolytes. These results are comparable with Pt/C. The FeCoNiRu-HESAC is used for Zinc-air battery applications with an open circuit potential of 1.39 V and power density of 0.16 W cm-2. Therefore, a strategy guided by DFT is provided for the rational design of HESAC which can be replaced with high-cost Pt catalysts toward ORR and beyond.
Collapse
Affiliation(s)
- Mohsen Tamtaji
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
| | - Min Gyu Kim
- Beamline Research DivisionPohang Accelerator Laboratory (PAL)Pohang University of Science and TechnologyPohang37673Republic of Korea
| | - Jun WANG
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technologyand Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong KongKowloon999077P.R. China
| | - Patrick Ryan Galligan
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technologyand Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong KongKowloon999077P.R. China
| | - Haoyu Zhu
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
| | - Faan‐Fung Hung
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
| | - Zhihang Xu
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Ye Zhu
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Zhengtang Luo
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technologyand Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong KongKowloon999077P.R. China
| | - William A. Goddard
- Materials and Process Simulation Center (MSC), MC 139–74California Institute of TechnologyPasadenaCA91125USA
| | - GuanHua Chen
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
- Department of ChemistryThe University of Hong KongPokfulam RoadHong Kong SAR999077China
| |
Collapse
|
6
|
Jesudass SC, Surendran S, Moon DJ, Shanmugapriya S, Kim JY, Janani G, Veeramani K, Mahadik S, Kim IG, Jung P, Kwon G, Jin K, Kim JK, Hong K, Park YI, Kim TH, Heo J, Sim U. Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting. J Colloid Interface Sci 2024; 663:566-576. [PMID: 38428114 DOI: 10.1016/j.jcis.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas Lawrence, KS 66045, United States
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
8
|
Xue Z, Tan R, Wang H, Tian J, Wei X, Hou H, Zhao Y. A novel tetragonal T-C 2N supported transition metal atoms as superior bifunctional catalysts for OER/ORR: From coordination environment to rational design. J Colloid Interface Sci 2023; 651:149-158. [PMID: 37542890 DOI: 10.1016/j.jcis.2023.07.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Single-atom catalysts with particular electronic structures and precisely regulated coordination environments delivering excellent activity for oxygen-evolution reaction (OER) and oxygen-reduction reaction (ORR) are highly desirable for renewable energy applications. In this work, a novel tetragonal carbon nitride T-C2N monolayer with remarkable stability was predicted by using the RG2 method. Inspired by the well-defined atomic structures and just right N4 aperture of T-C2N substrate, the electrocatalytic performance of a series of transition metal single-atoms anchored on porous T-C2N matrix (TM@C2N) have been systematically investigated. In addition, machine learning (ML) method was employed with the gradient boosting regression GBR model to deeply explore the complex controlling factors and offer direct guidance for rational discovery of desirable catalysts. On this basis, the coordination environment of the central TM active sites has been tailored by incorporating heteroatoms. Impressively, the Co@C2N/B-C, Rh@C2N/SC and Rh@C2N/SN exhibit significantly enhanced OER/ORR activity with notably low ηOER/ηORR of 0.39/0.32, 0.26/0.35 and 0.37/0.27 V, respectively. Our work provides insights into the rational design, data-driven, performance regulation, mechanism analysis and practical application of TMNC catalysts. Such a systematic theoretical framework can also be expanded to many other kinds of catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Rui Tan
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Hongxia Wang
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Jinzhong Tian
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Xiaolin Wei
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Hua Hou
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuhong Zhao
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China.
| |
Collapse
|
9
|
Cho JH, Lee C, Hong SH, Jang HY, Back S, Seo MG, Lee M, Min HK, Choi Y, Jang YJ, Ahn SH, Jang HW, Kim SY. Transition Metal Ion Doping on ZIF-8 Enhances the Electrochemical CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208224. [PMID: 36461101 DOI: 10.1002/adma.202208224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The electrochemical reduction of CO2 to diverse value-added chemicals is a unique, environmentally friendly approach for curbing greenhouse gas emissions while addressing sluggish catalytic activity and low Faradaic efficiency (FE) of electrocatalysts. Here, zeolite-imidazolate-frameworks-8 (ZIF-8) containing various transition metal ions-Ni, Fe, and Cu-at varying concentrations upon doping are fabricated for the electrocatalytic CO2 reduction reaction (CO2 RR) to carbon monoxide (CO) without further processing. Atom coordination environments and theoretical electrocatalytic performance are scrutinized via X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations. Upon optimized Cu doping on ZIF-8, Cu0.5 Zn0.5 /ZIF-8 achieves a high partial current density of 11.57 mA cm-2 and maximum FE for CO of 88.5% at -1.0 V (versus RHE) with a stable catalytic activity over 6 h. Furthermore, the electron-rich sp2 C atom facilitates COOH* promotion after Cu doping of ZIF-8, leading to a local effect between the zinc-nitrogen (Zn-N4 ) and copper-nitrogen (Cu-N4 ) moieties. Additionally, the advanced CO2 RR pathway is illustrated from various perspectives, including the pre-H-covered state under the CO2 RR. The findings expand the pool of efficient metal-organic framework (MOF)-based CO2 RR catalysts, deeming them viable alternatives to conventional catalysts.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hyun Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Myung-Gi Seo
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Minzae Lee
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Hyung-Ki Min
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Youngheon Choi
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO 2 reduction: Strategy and challenge. EXPLORATION (BEIJING, CHINA) 2023; 3:20230001. [PMID: 37933280 PMCID: PMC10582615 DOI: 10.1002/exp.20230001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
The realization of a complete techno-economy through a significant carbon dioxide (CO2) reduction in the atmosphere has been explored to promote a low-carbon economy in various ways. CO2 reduction reactions (CO2RRs) can be induced using sustainable energy, including electric and solar energy, using systems such as electrochemical (EC) CO2RR and photoelectrochemical (PEC) systems. This study summarizes various fabrication strategies for non-noble metal, copper-based, and metal-organic framework-based catalysts with excellent Faradaic efficiency (FE) for target carbon compounds, and for noble metals with low overvoltage. Although EC and PEC systems achieve high energy conversion efficiency with excellent catalysts, they still require external power and lack complete bias-free operation. Therefore, photovoltaics, which can overcome the limitations of these systems, have been introduced. The utilization of silicon and perovskite-based solar cells for photovoltaics-assisted EC (PV-EC) and photovoltaics-assisted PEC (PV-PEC) CO2RR systems are cost-efficient, and the III-V semiconductor photoabsorbers achieved high solar-to-carbon efficiency. This work focuses on PV-EC and PV-PEC CO2RR systems and their components and then summarizes the special cell configurations, including the tandem and stacked structures. Additionally, the study discusses current issues, such as low energy conversion, expensive PV, theoretical limits, and industrial scale-up, along with proposed solutions.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Joonhee Ma
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
11
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
12
|
Chen X, Zheng X, Qi L, Xue Y, Li Y. Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water Splitting. ACS MATERIALS AU 2022; 2:321-329. [PMID: 36855385 PMCID: PMC9928194 DOI: 10.1021/acsmaterialsau.1c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sp-C-hybridized alkyne bonds present the natural advantages of interacting with metal atoms and have the ability to generate a large number of new catalytic active sites on the surface and the interfaces, thus greatly promoting the efficient progress of various light/electrochemical reactions. In this work, we have successfully fabricated a novel type of interfacial structure containing sp-C-Mo/O bonds and mixed Mo valence states with outstanding catalytic activity and stability for photoelectrocatalytic (PEC) overall water splitting in a wide pH range (0-14), due to the presence of sp-carbon-rich graphdiyne. For example, in alkaline conditions (pH = 14), the overpotentials of oxygen and hydrogen evolution reactions at 10 mA cm-2 are 165 and 8 mV. When being used as an electrolyzer, the cell voltage of this catalyst is only 1.40 V to achieve 10 mA cm-2. The high PEC activity of graphdiyne@molybdenum oxide originates from the conversion of chemical bonds at the sp-C hybrid interface and the coexistence of multivalent states of molybdenum, triggering a large number of catalytic active sites, greatly promoting charge transfer and lowering water dissociation energy.
Collapse
Affiliation(s)
- Xi Chen
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuchen Zheng
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lu Qi
- Science
Center for Material Creation and Energy Conversion, Institute of Frontier
and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Yurui Xue
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Science
Center for Material Creation and Energy Conversion, Institute of Frontier
and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Yuliang Li
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|