1
|
Benedik NS, Proj M, Steinebach C, Sova M, Sosič I. Targeting TAK1: Evolution of inhibitors, challenges, and future directions. Pharmacol Ther 2025; 267:108810. [PMID: 39909209 DOI: 10.1016/j.pharmthera.2025.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The increasing incidence of inflammatory and malignant diseases signifies the need to develop first-in-class drugs with novel mechanisms of action. In this respect, the transforming growth factor (TGF)-β-activated kinase 1 (TAK1), an essential part of several signaling pathways, is considered relevant and promising. This manuscript provides a brief overview of the signal transduction orchestrated by TAK1 within these pathways, followed by an in-depth and thorough analysis of the chemical matter demonstrated to inhibit this kinase. Special attention is given to the selectivity profiling of inhibitors, as well as to the outcomes of their biological characterization. Because published TAK1 inhibitors differ significantly in their kinome selectivity, active-site binding, and biological activity, we hope that this review will allow a judicial estimation of their quality and usefulness for TAK1-addressing assays. Our thoughts on the perspectives and possible developments of the field are also provided to assist scientists who are involved in the design and development of TAK1-targeting modulators.
Collapse
Affiliation(s)
- Nika Strašek Benedik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Langlois JB, Brenneisen S, Rodde S, Vangrevelinghe E, Rose G, Lerch P, Sorge M, Ullrich T, Patora-Komisarska K, Quancard J, Larger P, Gianola L, Textor C, Chenal G, Rubic-Schneider T, Simkova K, Masmanidou O, Scheufler C, Lammens A, Bouzan A, Demirci S, Flotte L, Rivet H, Hartmann L, Guezel D, Flueckiger M, Schilb A, Schuepbach E, Kettle R, Jacobi C, Pearson D, Richards PJ, Minetti GC. Identification of TAK-756, A Potent TAK1 Inhibitor for the Treatment of Osteoarthritis through Intra-Articular Administration. J Med Chem 2024; 67:21163-21185. [PMID: 39576936 DOI: 10.1021/acs.jmedchem.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Osteoarthritis (OA) is a chronic and degenerative joint disease affecting more than 500 million patients worldwide with no disease-modifying treatment approved to date. Several publications report on the transforming growth factor β-activated kinase 1 (TAK1) as a potential molecular target for OA, with complementary anti-catabolic and anti-inflammatory effects. We report herein on the development of TAK1 inhibitors with physicochemical properties suitable for intra-articular injection, with the aim to achieve high drug concentration at the affected joint, while avoiding severe toxicity associated with systemic inhibition. More specifically, reducing solubility by increasing crystallinity, while maintaining moderate lipophilicity proved to be a good compromise to ensure high and sustained free drug exposures in the joint. Furthermore, structure-based design allowed for an improvement of selectivity versus interleukin-1 receptor-associated kinases 1 and 4 (IRAK1/4). Finally, TAK-756 was discovered as a potent TAK1 inhibitor with good selectivity versus IRAK1/4 as well as excellent intra-articular pharmacokinetic properties.
Collapse
Affiliation(s)
| | - Silke Brenneisen
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Stephane Rodde
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Geoffroy Rose
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Patrick Lerch
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Mickael Sorge
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Thomas Ullrich
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Jean Quancard
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Patrice Larger
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Lucas Gianola
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Claudia Textor
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Gaelle Chenal
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Katerina Simkova
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Olga Masmanidou
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Bunsenstrasse 7a, D-82152 Planegg-Martinsried, Germany
| | - Anais Bouzan
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Sabrina Demirci
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Ludivine Flotte
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Helene Rivet
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Lilian Hartmann
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Danyel Guezel
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Alain Schilb
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Edi Schuepbach
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Rachel Kettle
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Carsten Jacobi
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - David Pearson
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Peter J Richards
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Giulia C Minetti
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| |
Collapse
|
3
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
4
|
Hekking KFW, Maroto S, van Kekem K, Haasjes FS, Slootweg JC, Oude Alink PGB, Dirks R, Sardana M, Bolster MG, Kuijpers B, Smith D, Doodeman R, Scheepstra M, Zech B, Mulvihill M, Renzetti LM, Babiss L, Centrella PA, Clark MA, Cuozzo JW, Guié MA, Sigel E, Habeshian S, Hupp CD, Liu J, Thomson HA, Zhang Y, Keefe AD, Müller G, Gremmen S. Development of Potent Mcl-1 Inhibitors: Structural Investigations on Macrocycles Originating from a DNA-Encoded Chemical Library Screen. J Med Chem 2024; 67:3039-3065. [PMID: 38306405 DOI: 10.1021/acs.jmedchem.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ron Dirks
- Symeres, 6546BB Nijmegen, The Netherlands
| | | | | | | | | | | | | | - Birgit Zech
- X-Rx, Inc., New York, New York 10016, United States
| | | | | | - Lee Babiss
- X-Rx, Inc., New York, New York 10016, United States
| | | | | | - John W Cuozzo
- X-Chem, Inc., Waltham, Massachusetts 02453, United States
| | | | - Eric Sigel
- X-Chem, Inc., Waltham, Massachusetts 02453, United States
| | | | | | - Julie Liu
- X-Chem, Inc., Waltham, Massachusetts 02453, United States
| | | | - Ying Zhang
- X-Chem, Inc., Waltham, Massachusetts 02453, United States
| | | | | | | |
Collapse
|
5
|
Collie GW, Clark MA, Keefe AD, Madin A, Read JA, Rivers EL, Zhang Y. Screening Ultra-Large Encoded Compound Libraries Leads to Novel Protein-Ligand Interactions and High Selectivity. J Med Chem 2024; 67:864-884. [PMID: 38197367 PMCID: PMC10823476 DOI: 10.1021/acs.jmedchem.3c01861] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes. This Perspective is our attempt to analyze reports of DEL screening with the purpose of providing a rigorous and useful account of the binding modes observed for DEL-derived ligands with a focus on binding mode novelty.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- X-Chem,
Inc., Waltham, Massachusetts 02453, United States
| |
Collapse
|
6
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
8
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Ryan MD, Parkes AL, Corbett D, Dickie AP, Southey M, Andersen OA, Stein DB, Barbeau OR, Sanzone A, Thommes P, Barker J, Cain R, Compper C, Dejob M, Dorali A, Etheridge D, Evans S, Faulkner A, Gadouleau E, Gorman T, Haase D, Holbrow-Wilshaw M, Krulle T, Li X, Lumley C, Mertins B, Napier S, Odedra R, Papadopoulos K, Roumpelakis V, Spear K, Trimby E, Williams J, Zahn M, Keefe AD, Zhang Y, Soutter HT, Centrella PA, Clark MA, Cuozzo JW, Dumelin CE, Deng B, Hunt A, Sigel EA, Troast DM, DeJonge BLM. Discovery of Novel UDP- N-Acetylglucosamine Acyltransferase (LpxA) Inhibitors with Activity against Pseudomonas aeruginosa. J Med Chem 2021; 64:14377-14425. [PMID: 34569791 DOI: 10.1021/acs.jmedchem.1c00888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 μg/mL). Lack of activity against E. coli was maintained (IC50 > 20 μM and MIC > 128 μg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.
Collapse
Affiliation(s)
- M Dominic Ryan
- X-Biotix Therapeutics, 465 Waverly Oaks Road, Waltham, Massachusetts 02452, United States
| | - Alastair L Parkes
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - David Corbett
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Anthony P Dickie
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Michelle Southey
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Ole A Andersen
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Daniel B Stein
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Olivier R Barbeau
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Angelo Sanzone
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Pia Thommes
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - John Barker
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Ricky Cain
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Christel Compper
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Magali Dejob
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Alain Dorali
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Donnya Etheridge
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Sian Evans
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Adele Faulkner
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Elise Gadouleau
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Timothy Gorman
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Denes Haase
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | | | - Thomas Krulle
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Xianfu Li
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Christopher Lumley
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Barbara Mertins
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Spencer Napier
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Rajesh Odedra
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Kostas Papadopoulos
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | | | - Kate Spear
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Emily Trimby
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Jennifer Williams
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Michael Zahn
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Anthony D Keefe
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Holly T Soutter
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Paolo A Centrella
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Matthew A Clark
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W Cuozzo
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Boer Deng
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Avery Hunt
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Eric A Sigel
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Dawn M Troast
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Boudewijn L M DeJonge
- X-Biotix Therapeutics, 465 Waverly Oaks Road, Waltham, Massachusetts 02452, United States
| |
Collapse
|
10
|
Rianjongdee F, Atkinson SJ, Chung CW, Grandi P, Gray JRJ, Kaushansky LJ, Medeiros P, Messenger C, Phillipou A, Preston A, Prinjha RK, Rioja I, Satz AL, Taylor S, Wall ID, Watson RJ, Yao G, Demont EH. Discovery of a Highly Selective BET BD2 Inhibitor from a DNA-Encoded Library Technology Screening Hit. J Med Chem 2021; 64:10806-10833. [PMID: 34251219 DOI: 10.1021/acs.jmedchem.1c00412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Second-generation bromodomain and extra terminal (BET) inhibitors, which selectively target one of the two bromodomains in the BET proteins, have begun to emerge in the literature. These inhibitors aim to help determine the roles and functions of each domain and assess whether they can demonstrate an improved safety profile in clinical settings compared to pan-BET inhibitors. Herein, we describe the discovery of a novel BET BD2-selective chemotype using a structure-based drug design from a hit identified by DNA-encoded library technologies, showing a structural differentiation from key previously reported greater than 100-fold BD2-selective chemotypes GSK620, GSK046, and ABBV-744. Following a structure-based hypothesis for the selectivity and optimization of the physicochemical properties of the series, we identified 60 (GSK040), an in vitro ready and in vivo capable BET BD2-inhibitor of unprecedented selectivity (5000-fold) against BET BD1, excellent selectivity against other bromodomains, and good physicochemical properties. This novel chemical probe can be added to the toolbox used in the advancement of epigenetics research.
Collapse
Affiliation(s)
| | | | | | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, Heidelberg 69117, Germany
| | | | - Laura J Kaushansky
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | - Patricia Medeiros
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | | | | | | | | | | | | | | | | | | | - Gang Yao
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | | |
Collapse
|
11
|
Lee ECY, McRiner AJ, Georgiadis KE, Liu J, Wang Z, Ferguson AD, Levin B, von Rechenberg M, Hupp CD, Monteiro MI, Keefe AD, Olszewski A, Eyermann CJ, Centrella P, Liu Y, Arora S, Cuozzo JW, Zhang Y, Clark MA, Huguet C, Kohlmann A. Discovery of Novel, Potent Inhibitors of Hydroxy Acid Oxidase 1 (HAO1) Using DNA-Encoded Chemical Library Screening. J Med Chem 2021; 64:6730-6744. [PMID: 33955740 DOI: 10.1021/acs.jmedchem.0c02271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of hydroxy acid oxidase 1 (HAO1) is a strategy to mitigate the accumulation of toxic oxalate that results from reduced activity of alanine-glyoxylate aminotransferase (AGXT) in primary hyperoxaluria 1 (PH1) patients. DNA-Encoded Chemical Library (DECL) screening provided two novel chemical series of potent HAO1 inhibitors, represented by compounds 3-6. Compound 5 was further optimized via various structure-activity relationship (SAR) exploration methods to 29, a compound with improved potency and absorption, distribution, metabolism, and excretion (ADME)/pharmacokinetic (PK) properties. Since carboxylic acid-containing compounds are often poorly permeable and have potential active glucuronide metabolites, we undertook a brief, initial exploration of acid replacements with the aim of identifying non-acid-containing HAO1 inhibitors. Structure-based drug design initiated with Compound 5 led to the identification of a nonacid inhibitor of HAO1, 31, which has weaker potency and increased permeability.
Collapse
Affiliation(s)
- Esther C Y Lee
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew J McRiner
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Katy E Georgiadis
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Julie Liu
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Zooey Wang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew D Ferguson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Benjamin Levin
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Christopher D Hupp
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Michael I Monteiro
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anthony D Keefe
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Allison Olszewski
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Charles J Eyermann
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Paolo Centrella
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Yanbin Liu
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Shilpi Arora
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W Cuozzo
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Matthew A Clark
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Christelle Huguet
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anna Kohlmann
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|