1
|
Li H, Qiao Z, Xiao X, Cao X, Li Z, Liu M, Jiao Q, Chen X, Du X, Jiang H. G protein-coupled receptors: A golden key to the treasure-trove of neurodegenerative diseases. Clin Nutr 2025; 46:155-168. [PMID: 39933302 DOI: 10.1016/j.clnu.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
G protein-coupled receptors (GPCRs) are a class of transmembrane proteins that distribute in various organs extensively. They can regulate physiological functions such as perception, neurotransmission and endocrinology through the synergies of signaling pathways. At present, Food and Drug Administration (FDA) have approved more than 500 drugs targeting GPCRs to treat a variety of conditions, including neurological diseases, gastrointestinal diseases and tumors. Conformational diversity and dynamic changes make GPCRs a star target for the treatment of neurodegenerative diseases. Moreover, GPCRs can also open biased signaling pathways for G protein and β-arrestin, which has unique functional selectivity and the possibility of overcoming side effects. Some studies believe that biased drugs will be the mainstream direction of drug innovation in the future. To disclose the essential role and research process of GPCRs in neurodegenerative diseases, we firstly reviewed several pivotal GPCRs and their mediated signaling pathways in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Then we focused on the biased signaling pathway of GPCRs in these diseases. Finally, we updated the GPCR drugs under research for the treatment of neurodegenerative diseases in the clinical trials or approval. This review could provide valuable targets for precision therapy to cope with the dysfunction of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Zhen Qiao
- Shandong Provincial Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xiu Cao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Zhaodong Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mengru Liu
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China; Shandong Provincial Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
2
|
Design, Synthesis, and Biological Evaluation of 4,4’-Difluorobenzhydrol Carbamates as Selective M1 Antagonists. Pharmaceuticals (Basel) 2022; 15:ph15020248. [PMID: 35215360 PMCID: PMC8879200 DOI: 10.3390/ph15020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their important role in mediating a broad range of physiological functions, muscarinic acetylcholine receptors (mAChRs) have been a promising target for therapeutic and diagnostic applications alike; however, the list of truly subtype-selective ligands is scarce. Within this work, we have identified a series of twelve 4,4’-difluorobenzhydrol carbamates through a rigorous docking campaign leveraging commercially available amine databases. After synthesis, these compounds have been evaluated for their physico–chemical property profiles, including characteristics such as HPLC-logD, tPSA, logBB, and logPS. For all the synthesized carbamates, these characteristics indicate the potential for BBB permeation. In competitive radioligand binding experiments using Chinese hamster ovary cell membranes expressing the individual human mAChR subtype hM1-hM5, the most promising compound 2 displayed a high binding affinitiy towards hM1R (1.2 nM) while exhibiting modest-to-excellent selectivity versus the hM2-5R (4–189-fold). All 12 compounds were shown to act in an antagonistic fashion towards hM1R using a dose-dependent calcium mobilization assay. The structural eligibility for radiolabeling and their pharmacological and physico–chemical property profiles render compounds 2, 5, and 7 promising candidates for future position emission tomography (PET) tracer development.
Collapse
|
3
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Remyelination: what are the prospects for regenerative therapies in multiple sclerosis? Emerg Top Life Sci 2021; 5:705-709. [PMID: 34415022 DOI: 10.1042/etls20210164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS) involves the immune system attacking the myelin sheaths surrounding axons and is a major cause of disability in working-age adults. Various approved therapies now provide reasonably good control over MS neuroinflammation, but none have a pronounced impact on the neurodegeneration associated with the disease. One prominent approach to fulfilling the unmet need for neuroprotective therapies, is the search for agents that promote 'remyelination', namely the generation of new oligodendrocytes that can form replacement myelin sheaths around denuded axons. In this article, I discuss some emerging targets for remyelinating therapies, mainly being pursued by recently formed small companies translating academic findings.
Collapse
|
5
|
An S, Song KH, Lee S. Vinyl sulfone synthesis via copper-catalyzed three-component decarboxylative addition. Org Biomol Chem 2021; 19:7827-7831. [PMID: 34549236 DOI: 10.1039/d1ob01435h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of vinyl sulfone derivatives via the reaction of arylpropiolic acids, K2S2O5, and aryl boronic acids is reported. The CuBr2/1,10-phenanthroline catalytic system in the presence of acetic acid provides the desired vinyl sulfones in moderate to good yield. Furthermore, the methodology features excellent functional group tolerance.
Collapse
Affiliation(s)
- Seunghwan An
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Kwang Ho Song
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|