1
|
Britt HM, Robinson CV. Traversing the drug discovery landscape using native mass spectrometry. Curr Opin Struct Biol 2025; 91:102993. [PMID: 39893771 DOI: 10.1016/j.sbi.2025.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
As health needs in our society evolve, the field of drug discovery must undergo constant innovation and improvement to identify novel targets and drug candidates. Owing to its ability to simultaneously capture biological interactions and provide in-depth molecular characterisation of the species involved, native mass spectrometry is starting to play an important role in this endeavour. Here, we discuss recent contributions that native mass spectrometry has made to drug discovery including deciphering protein-small molecule interactions, unravelling biochemical pathways, and integrating with complementary structural approaches.
Collapse
Affiliation(s)
- Hannah M Britt
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Sarvary I, Vestergaard M, Moretti L, Andersson J, Peiró Cadahía J, Cowland S, Flagstad T, Franch T, Gouliaev A, Husemoen G, Jacso T, Kronborg T, Kuropatnicka A, Nadali A, Madsen M, Nielsen S, Pii D, Ryborg S, Soede C, Allen JR, Bourbeau M, Li K, Liu Q, Lo MC, Madoux F, Mardirossian N, Moriguchi J, Ngo R, Peng CC, Pettus L, Tamayo N, Wang P, Kapoor R, Belmontes B, Caenepeel S, Hughes P, Liu S, Slemmons KK, Yang Y, Xie F, Ghimire-Rijal S, Mukund S, Glad S. From DNA-Encoded Library Screening to AM-9747: An MTA-Cooperative PRMT5 Inhibitor with Potent Oral In Vivo Efficacy. J Med Chem 2025; 68:6534-6557. [PMID: 40102181 PMCID: PMC11956014 DOI: 10.1021/acs.jmedchem.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Inhibition of the methyltransferase enzyme PRMT5 by MTA accumulation is a vulnerability of MTAP-deleted cancers. Herein, we report the discovery and optimization of a quinolin-2-amine DEL hit that cooperatively binds PRMT5:MEP50 and MTA to generate a catalytically inhibited ternary complex. X-ray crystallography confirms quinolin-2-amine binding of PRMT5 glutamate-444, while simultaneously exhibiting a hydrophobic interaction with MTA. Lead optimization produced AM-9747, which selectively inhibits PRMT5-directed symmetric dimethylation of arginine residues of proteins, leading to a potent reduction of cell viability in MTAP-del cells compared to MTAP-WT cells. Once-daily oral dosing of AM-9747 in mouse xenografts is well tolerated, displaying a robust and dose-dependent inhibition of symmetric dimethylation of arginine in MTAP-del tumor-xenografts and significant concomitant tumor growth inhibition without any significant effect on MTAP-WT tumor xenografts.
Collapse
Affiliation(s)
- Ian Sarvary
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | | | - Loris Moretti
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Jan Andersson
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | | | - Sanne Cowland
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Thomas Flagstad
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Thomas Franch
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Alex Gouliaev
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Gitte Husemoen
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Tomas Jacso
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Titi Kronborg
- Amgen
Research, Amgen Inc, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | | | - Anna Nadali
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Mads Madsen
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - So̷ren Nielsen
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - David Pii
- Amgen
Research, Amgen Inc, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | - So̷ren Ryborg
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Camillia Soede
- Amgen
Research, Amgen Inc, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | - Jennifer R. Allen
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Matthew Bourbeau
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kexue Li
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Qingyian Liu
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Mei-Chu Lo
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Franck Madoux
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Narbe Mardirossian
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jodi Moriguchi
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Rachel Ngo
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Chi-Chi Peng
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Liping Pettus
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Nuria Tamayo
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Wang
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Rajiv Kapoor
- Amgen
Research, Syngene-Amgen Research and Development
Center, Biocon Park, Bangalore 560099, India
| | - Brian Belmontes
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sean Caenepeel
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Hughes
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Siyuan Liu
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Katherine K. Slemmons
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Yajing Yang
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Fang Xie
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Sudipa Ghimire-Rijal
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Susmith Mukund
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sanne Glad
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Gan Y, Zeng Y, Guan H, Shaginian A, Li J, Yang G, Liu G. Synthesis of DNA-Encoded Macrocyclic Peptides via Visible-Light-Mediated Desulfurative C-C Bond Formation. Org Lett 2024; 26:10640-10644. [PMID: 39606858 DOI: 10.1021/acs.orglett.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DNA-encoded library (DEL) technology has been developed to serve as a practical platform for the discovery of biologically active macrocyclic peptide compounds. However, the cyclization of linear peptides has been widely regarded as the challenging step in the production of macrocyclic peptide DELs. Herein, we describe a novel DNA-compatible macrocyclization strategy, which enables the construction of ring systems via visible-light-mediated desulfurative C-C bond formation. The macrocyclization proceeds smoothly under mild conditions and in a good yield. Moreover, the reaction is compatible with a variety of linear substrates and can thus be employed to generate structurally diverse DNA-encoded macrocycles with various ring sizes.
Collapse
Affiliation(s)
- Yi Gan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yumei Zeng
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Haojie Guan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
4
|
Gasparetto M, Fődi B, Sipos G. Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications. Beilstein J Org Chem 2024; 20:1922-1932. [PMID: 39135657 PMCID: PMC11318629 DOI: 10.3762/bjoc.20.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Amino acids are vital motifs in the domain of biochemistry, serving as the foundational unit for peptides and proteins, while also holding a crucial function in many biological processes. Due to their bifunctional character, they have been also used for combinatorial chemistry purposes, such as the preparation of DNA-encoded chemical libraries. We developed a practical synthesis for α-heteroaryl-α-amino acids starting from an array of small heteroaromatic halides. The reaction sequence utilizes a photochemically enhanced Negishi cross-coupling as a key step, followed by oximation and reduction. The prepared amino esters were validated for on-DNA reactivity via a reverse amidation-hydrolysis-reverse amidation protocol.
Collapse
Affiliation(s)
- Matteo Gasparetto
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| | - Balázs Fődi
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| | - Gellért Sipos
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| |
Collapse
|
5
|
Gras M, Adler P, Smietana M. A Catalytic Approach for the Synthesis of Peptide-Oligonucleotides Conjugates in Aqueous Solution or On-Column. Chemistry 2024; 30:e202401069. [PMID: 38709711 DOI: 10.1002/chem.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Peptide-oligonucleotide conjugates (POCs) are covalent architectures composed of a DNA or RNA molecules linked to a peptide. These constructs have found widespread applications ranging from hybrid nanomaterials to gene-targeted therapies. Considering the important role of POCs, a new catalytic approach for their preparation is reported here, that could be applied either on solid support in anhydrous media, or post-synthetically in aqueous buffer. Single amino acids, peptides and cell penetrating peptides (CPPs) were conjugated to various oligo(ribo)nucleotides with high conversions and good isolated yields. The applicability of the method was demonstrated on more than 35 examples including an analogue of a commercial therapeutic oligonucleotide. Other conjugation partners, such as deoxycholic acid and biotin were also successfully conjugated to oligonucleotides. To highlight the potential of this catalytic approach, these conditions have been applied to iterative processes, which is of high interest for the development of DNA-Encoded Libraries.
Collapse
Affiliation(s)
- Marion Gras
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Pauline Adler
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Michael Smietana
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
6
|
Deng J, Belyanskaya S, Prabhu N, Arico-Muendel C, Deng H, Phelps CB, Israel DI, Yang H, Boyer J, Franklin GJ, Yap JL, Lind KE, Tsai CH, Donahue C, Summerfield JD. Profiling cells with DELs: Small molecule fingerprinting of cell surfaces. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100171. [PMID: 38917882 DOI: 10.1016/j.slasd.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
DNA-encoded small molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, it has been used to identify ligands against targets that are soluble or overexpressed on cell surfaces. Here, we report applying cell-based selection methods to profile surfaces of mouse C2C12 myoblasts and myotube cells in an unbiased, target agnostic manner. A panel of on-DNA compounds were identified and confirmed for cell binding selectivity. We optimized the cell selection protocol and employed a novel data analysis method to identify cell selective ligands against a panel of human B and T lymphocytes. We discuss the generality of using this workflow for DNA encoded small molecule library selection and data analysis against different cell types, and the feasibility of applying this method to profile cell surfaces for biomarker and target identification.
Collapse
Affiliation(s)
- Jason Deng
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Svetlana Belyanskaya
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Ninad Prabhu
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | | | - Hongfeng Deng
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Christopher B Phelps
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - David I Israel
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Hongfang Yang
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Joseph Boyer
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - G Joseph Franklin
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Jeremy L Yap
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Kenneth E Lind
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Ching-Hsuan Tsai
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Christine Donahue
- GSK Molecular Modalities Discovery, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | | |
Collapse
|
7
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
8
|
Prudent R, Lemoine H, Walsh J, Roche D. Affinity selection mass spectrometry speeding drug discovery. Drug Discov Today 2023; 28:103760. [PMID: 37660985 DOI: 10.1016/j.drudis.2023.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Affinity selection mass spectrometry (AS-MS) has gained momentum in drug discovery. This review summarizes how this technology has slowly risen as a new paradigm in hit identification and its potential synergy with DNA encoded library technology. It presents an overview of the recent results on challenging targets and perspectives on new areas of research, such as RNA targeting with small molecules. The versatility of the approach is illustrated and strategic drivers discussed in terms of the experience of a small-medium CRO and a big pharma organization.
Collapse
Affiliation(s)
| | | | - Jarrod Walsh
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Didier Roche
- Edelris, Bioparc, Bioserra 1 Building, Lyon, France.
| |
Collapse
|
9
|
Fitzgerald P, Cochrane WG, Paegel BM. Dose-Response Activity-Based DNA-Encoded Library Screening. ACS Med Chem Lett 2023; 14:1295-1303. [PMID: 37736190 PMCID: PMC10510511 DOI: 10.1021/acsmedchemlett.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
Dose-response, or "conforming" behavior, increases confidence in a screening hit's authenticity. Here, we demonstrate dose-response solid-phase DNA-encoded library (DEL) screening. Compound dose in microfluidic droplets is modulated via the UV intensity of photocleavage from DEL beads. A 55,296-member DEL was screened at different UV intensities against model enzyme drug targets factor Xa (FXa) and autotaxin (ATX). Both screens yielded photochemical dose-dependent hit rates (FXa hit rates of 0.08/0.05% at 100/30% UV exposure; ATX hit rates of 0.24/0.08% at 100/20% UV exposure). FXa hits contained structures reflective of FXa inhibitors and four hits inhibited FXa (IC50 = 4.2 ± 0.1, 7.4 ± 0.3, 9.0 ± 0.3, and 19 ± 2 μM.) The top ATX hits (two dihydrobenzamidazolones and a tetrahydroisoquinoline) were validated as inhibitors (IC50 = 7 ± 2, 13 ± 2, and 1 ± 0.3 μM). Photochemical dose-response DEL screening data prioritized hits for synthesis, the rate-limiting step in DEL lead identification.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Wesley G. Cochrane
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Departments
of Chemistry & Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
10
|
Buskes M, Coffin A, Troast DM, Stein R, Blanco MJ. Accelerating Drug Discovery: Synthesis of Complex Chemotypes via Multicomponent Reactions. ACS Med Chem Lett 2023; 14:376-385. [PMID: 37077380 PMCID: PMC10107905 DOI: 10.1021/acsmedchemlett.3c00012] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
The generation of multiple bonds in one reaction step has attracted massive interest in drug discovery and development. Multicomponent reactions (MCRs) offer the advantage of combining three or more reagents in a one-pot fashion to effectively yield a synthetic product. This approach significantly accelerates the synthesis of relevant compounds for biological testing. However, there is a perception that this methodology will only produce simple chemical scaffolds with limited use in medicinal chemistry. In this Microperspective, we want to highlight the value of MCRs toward the synthesis of complex molecules characterized by the presence of quaternary and chiral centers. This paper will cover specific examples showing the impact of this technology toward the discovery of clinical compounds and recent breakthroughs to expand the scope of the reactions toward topologically rich molecular chemotypes.
Collapse
Affiliation(s)
- Melissa
J. Buskes
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Aaron Coffin
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Dawn M. Troast
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Rachel Stein
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Maria-Jesus Blanco
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Luo A, Zhou H, Hua Q, An Y, Ma H, Zhao X, Yang K, Hu YJ. Development of the Inverse Sonogashira Reaction for DEL Synthesis. ACS Med Chem Lett 2023; 14:270-277. [PMID: 36923912 PMCID: PMC10009795 DOI: 10.1021/acsmedchemlett.2c00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
An efficient approach for aryl acetylene DNA-encoded library (DEL) synthesis was developed in this study by transition-metal-mediated inverse Sonogashira reaction of 1-iodoalkyne with boronic acid under ambient conditions, with moderate to excellent conversions and broad substrate adaptability for the first time. Compared to palladium-phosphine, copper iodide performed better in the on-DNA inverse Sonogashira reaction. Interestingly, substrate diversity can be enhanced by first interrogating coupling reagents under copper-promoted conditions, and then revalidating them under palladium-facilitated conditions for those reagents which failed under the former. This complementary validation strategy is particularly well-fitted to any DEL validation studies.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hongxia Zhou
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Qini Hua
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Yufang An
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hangke Ma
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Xue Zhao
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Kexin Yang
- Pharmaron
Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yun Jin Hu
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| |
Collapse
|
12
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
14
|
Yen-Pon E, Li L, Levitre G, Majhi J, McClain EJ, Voight EA, Crane EA, Molander GA. On-DNA Hydroalkylation to Introduce Diverse Bicyclo[1.1.1]pentanes and Abundant Alkyls via Halogen Atom Transfer. J Am Chem Soc 2022; 144:12184-12191. [PMID: 35759692 PMCID: PMC10412002 DOI: 10.1021/jacs.2c03025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA-encoded libraries have proven their tremendous value in the identification of new lead compounds for drug discovery. To access libraries in new chemical space, many methods have emerged to transpose traditional mol-scale reactivity to nmol-scale, on-DNA chemistry. However, procedures to access libraries with a greater fraction of C(sp3) content are still limited, and the need to "escape from flatland" more readily on-DNA remains. Herein, we report a Giese addition to install highly functionalized bicyclo[1.1.1]pentanes (BCPs) using tricyclo[1.1.1.01,3]pentane (TCP) as a radical linchpin, as well as other diverse alkyl groups, on-DNA from the corresponding organohalides as non-stabilized radical precursors. Telescoped procedures allow extension of the substrate pool by at least an order of magnitude to ubiquitous alcohols and carboxylic acids, allowing us to "upcycle" these abundant feedstocks to afford non-traditional libraries with different physicochemical properties for the small-molecule products (i.e., non-peptide libraries with acids). This approach is amenable to library production, as a DNA damage assessment revealed good PCR amplifiability and only 6% mutated sequences for a full-length DNA tag.
Collapse
Affiliation(s)
- Expédite Yen-Pon
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Longbo Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Edward J. McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Eric A. Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Erika A. Crane
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
15
|
Xia B, Summerfield JD. High-Throughput Binder Confirmation (HTBC). Methods Mol Biol 2022; 2541:207-214. [PMID: 36083559 DOI: 10.1007/978-1-0716-2545-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we describe a DEL "recipe" approach to hit confirmation using on-DNA cleavable linkers which can be followed by direct AS-MS evaluation and identification of binder(s) from the released small-molecule mixture. When coupled with automation, this platform creates opportunity for enabling an even higher-throughput binder confirmation (HTBC) platform to allow full interrogation of selections results. Two on-DNA cleavable strategies of releasing small molecules from DNA are reported herein.
Collapse
Affiliation(s)
- Bing Xia
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, Cambridge, MA, USA
| | - Jennifer D Summerfield
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, Cambridge, MA, USA.
| |
Collapse
|