1
|
Wydra VR, Plank N, Zwirner S, Selig R, Rasch A, Masberg B, Lämmerhofer M, Zender L, Koch P, Albrecht W, Laufer S. A "Ligand First" Approach toward Selective, Covalent JNK2/3 Inhibitors. J Med Chem 2025. [PMID: 40404564 DOI: 10.1021/acs.jmedchem.5c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
All JNK isoforms play a specific role in various diseases. The role of the JNK2 isoform has so far received little attention compared to its JNK1 and JNK3 counterparts with JNK3 being a potential target for neurodegenerative diseases and an inhibitor with JNK1 bias being currently investigated in clinical trials. Using an iterative, structure-guided optimization approach starting from a reported reversible binding aminopyrazole-derived scaffold, novel highly potent JNK2/3 selective inhibitors were generated ("ligand-first approach"). These reversible inhibitors were further transformed to covalent inhibitors by attaching an electrophilic warhead moiety, able to address a conserved cysteine side chain present in JNKs. Reversible and covalent inhibitors presented in this study show high JNK2/3 isoform selectivity and activity in cells. The covalently acting lead compound 56d shows good kinetic data with a kinact/KI (JNK2) = 38,200 M-1 s-1 as well as cellular isoform selectivity and a clean kinome profile.
Collapse
Affiliation(s)
- Valentin R Wydra
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Nicole Plank
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefan Zwirner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital of Tübingen, Otfried-Müller-Straße 14, 72076 Tübingen, Germany
| | - Roland Selig
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072 Tübingen, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital of Tübingen, Otfried-Müller-Straße 14, 72076 Tübingen, Germany
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072 Tübingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Pierre Koch
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
- IFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| |
Collapse
|
2
|
Wu Y, Zhao Y, Guan Z, Esmaeili S, Xiao Z, Kuriakose D. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Cell Adh Migr 2024; 18:1-11. [PMID: 38357988 PMCID: PMC10878020 DOI: 10.1080/19336918.2024.2316576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
The intensive study and investigation of neuroprotective therapy for central nervous system (CNS) diseases is ongoing. Due to shared mechanisms of neurodegeneration, a neuroprotective approach might offer benefits across multiple neurological disorders, despite variations in symptoms or injuries. C-Jun N-terminal Kinase 3 (JNK3) is found primarily in the CNS and is involved in physiological processes such as brain development, synapse formation, and memory formation. The potential of JNK3 as a target for pharmacological development holds promise for advancing neuroprotective therapies. Developing small molecule JNK3 inhibitors into drugs with neuroprotective qualities could facilitate neuronal restoration and self-repair. This review focuses on elucidating key neuroprotective mechanisms, exploring the interplay between neurodegenerative diseases and neuroprotection, and discussing advancements in JNK3 inhibitor drug development.
Collapse
Affiliation(s)
- Yibeini Wu
- Department of Anatomy and Developmental biology, Monash University, Clayton, Vic, Australia
| | - Yiling Zhao
- Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Ziman Guan
- Department of Anatomy and Developmental biology, Monash University, Clayton, Vic, Australia
| | - Sajjad Esmaeili
- Department of Anatomy and Developmental biology, Monash University, Clayton, Vic, Australia
| | - Zhicheng Xiao
- Department of Anatomy and Developmental biology, Monash University, Clayton, Vic, Australia
- Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Diji Kuriakose
- Department of Anatomy and Developmental biology, Monash University, Clayton, Vic, Australia
| |
Collapse
|
3
|
Shuai W, Yang P, Xiao H, Zhu Y, Bu F, Wang A, Sun Q, Wang G, Ouyang L. Selective Covalent Inhibiting JNK3 by Small Molecules for Parkinson's Diseases. Angew Chem Int Ed Engl 2024:e202411037. [PMID: 39276356 DOI: 10.1002/anie.202411037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
c-Jun N-terminal kinases (JNKs) including JNK1/2/3 are key members of mitogen-activated protein kinase family. Wherein JNK3 is specifically expressed in brain and emerges as therapeutic target, especially for neurodegenerative diseases. However, developing JNK3 selective inhibitors as chemical probes to investigate its therapeutic potential in diseases remains challenging. Here, we adopted the covalent strategy for identifying JNK3-selective covalent inhibitor JC16I, with high inhibitory activity against JNK3. Despite targeting a conserved cysteine in the vicinity of ATP pocket in JNK family, JC16I exerted a greater than 160-fold selectivity for JNK3 over JNK1/2. Importantly, even at low concentration, JC16I showed enhanced and long-lasting inhibition against cellular JNK3. In addition, its alkyne-containing probe JC-P1 could label JNK3 in SH-SY5Y cell lysate and living cells, with good proteome-wide selectivity. JC16I selectively suppressed the abnormal activation of JNK3 signaling and sufficiently exhibited neuroprotective effect in Parkinson's diseases (PD) models. Overall, our findings highlight the potential of developing isoform-selective and cell-active JNK3 inhibitors by covalent drug design strategy targeting a conserved cysteine. This work not only provides a valuable chemical probe for JNK3-targeted investigations in vitro and in vivo but also opens new avenues for the treatment of PD.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Panpan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| |
Collapse
|
4
|
Park H, Feng Y. Structural Study of Selectivity Mechanisms for JNK3 and p38α with Indazole Scaffold Probing Compounds. RESEARCH SQUARE 2024:rs.3.rs-4730282. [PMID: 39149466 PMCID: PMC11326381 DOI: 10.21203/rs.3.rs-4730282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Selectivity is a primary focus in medicinal chemistry for ATP-competitive kinase inhibitors due to the highly conserved ATP binding pockets in the kinome. A decade of medicinal chemistry efforts has been carried out to develop selective inhibitors for JNKs, resulting in the identification of numerous promising scaffolds that even exhibit isoform selectivity. Thiophene-indazole is one of the scaffolds explored for isoform selectivity. Some iterations of this scaffold have also shown selectivity for p38α. In this study, we utilized four compounds derived from thiophene-indazole to investigate the mechanisms of selectivity for JNK3 and p38α. We determined crystal structures of the inhibitors bound to either JNK3 or p38α and subjected them to molecular dynamics (MD) simulations to understand the binding mechanism and critical interactions that govern affinity and selectivity for these two important kinases. The findings from this study provides valuable information for improving current lead inhibitors and developing a new generation of JNK3 isoform inhibitors.
Collapse
Affiliation(s)
- HaJeung Park
- X-ray Crystallography Core, UF Scripps Biomedical Research
| | | |
Collapse
|
5
|
Bayraktar G, Alptüzün V. Recent Molecular Targets and their Ligands for the Treatment of Alzheimer Disease. Curr Top Med Chem 2024; 24:2447-2464. [PMID: 39171472 DOI: 10.2174/0115680266318722240809050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Alzheimer's disease is a multifaceted neurodegenerative disease. Cholinergic dysfunction, amyloid β toxicity, tauopathies, oxidative stress, neuroinflammation are among the main pathologies of the disease. Ligands targeting more than one pathology, multi-target directed ligands, attract attention in the recent years to tackle Alzheimer's disease. In this review, we aimed to cover different biochemical pathways, that are revealed in recent years for the pathology of the disease, as druggable targets such as cannabinoid receptors, matrix metalloproteinases, histone deacetylase and various kinases including, glycogen synthase kinase-3, mitogen-activated protein kinase and c-Jun N-terminal kinase, and their ligands for the treatment of Alzheimer's disease in the hope of providing more realistic insights into the field.
Collapse
Affiliation(s)
- Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| |
Collapse
|
6
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 PMCID: PMC12045526 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Li Z, Yin B, Zhang S, Lan Z, Zhang L. Targeting protein kinases for the treatment of Alzheimer's disease: Recent progress and future perspectives. Eur J Med Chem 2023; 261:115817. [PMID: 37722288 DOI: 10.1016/j.ejmech.2023.115817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by memory impairment, mental retardation, impaired motor balance, loss of self-care and even death. Among the complex and diverse pathological changes in AD, protein kinases are deeply involved in abnormal phosphorylation of Tau proteins to form intracellular neuronal fiber tangles, neuronal loss, extracellular β-amyloid (Aβ) deposits to form amyloid plaques, and synaptic disturbances. As a disease of the elderly, the growing geriatric population is directly driving the market demand for AD therapeutics, and protein kinases are potential targets for the future fight against AD. This perspective provides an in-depth look at the role of the major protein kinases (GSK-3β, CDK5, p38 MAPK, ERK1/2, and JNK3) in the pathogenesis of AD. At the same time, the development of different protein kinase inhibitors and the current state of clinical advancement are also outlined.
Collapse
Affiliation(s)
- Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhigang Lan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
8
|
Yao C, Shen Z, Shen L, Kadier K, Zhao J, Guo Y, Xu L, Cao J, Dong X, Yang B. Identification of Potential JNK3 Inhibitors: A Combined Approach Using Molecular Docking and Deep Learning-Based Virtual Screening. Pharmaceuticals (Basel) 2023; 16:1459. [PMID: 37895928 PMCID: PMC10610115 DOI: 10.3390/ph16101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
JNK3, a member of the MAPK family, plays a pivotal role in mediating cellular responses to stress signals, with its activation implicated in a myriad of inflammatory conditions. While JNK3 holds promise as a therapeutic target for neurodegenerative disorders such as Huntington's, Parkinson's, and Alzheimer's diseases, there remains a gap in the market for effective JNK3 inhibitors. Despite some pan-JNK inhibitors reaching clinical trials, no JNK-targeted therapies have achieved market approval. To bridge this gap, our study introduces a sophisticated virtual screening approach. We begin with an energy-based screening, subsequently integrating a variety of rescoring techniques. These encompass glide docking scores, MM/GBSA, and artificial scoring mechanisms such as DeepDock and advanced Graph Neural Networks. This virtual screening workflow is designed to evaluate and identify potential small-molecule inhibitors with high binding affinity. We have implemented a virtual screening workflow to identify potential candidate molecules. This process has resulted in the selection of ten molecules. Subsequently, these ten molecules have undergone biological activity evaluation to assess their potential efficacy. Impressively, molecule compound 6 surfaced as the most promising, exhibiting a potent kinase inhibitory activity marked by an IC50 of 130.1 nM and a notable reduction in TNF-α release within macrophages. This suggests that compound 6 could potentially serve as an effective inhibitor for the treatment of neuroinflammation and neurodegenerative diseases. The prospect of further medicinal modifications to optimize compound 6 presents a promising avenue for future research and development in this field. Utilizing binding pose metadynamics coupled with molecular dynamics simulations, we delved into the explicit binding mode of compound 6 to JNK3. Such insights pave the way for refined drug development strategies. Collectively, our results underscore the efficacy of the hybrid virtual screening workflow in the identification of robust JNK3 inhibitors, holding promise for innovative treatments against neuroinflammation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Chenpeng Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.Y.); (K.K.); (J.C.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
| | - Zheyuan Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (Y.G.)
| | - Liteng Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (Y.G.)
| | - Kailibinuer Kadier
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.Y.); (K.K.); (J.C.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
| | - Jingyi Zhao
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (Y.G.)
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (Y.G.)
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China;
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.Y.); (K.K.); (J.C.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (Y.G.)
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.Y.); (K.K.); (J.C.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China; (Z.S.); (L.S.)
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (Y.G.)
| |
Collapse
|
9
|
Li Z, Zhu G, Liu X, Gao T, Fang F, Dou X, Li Y, Zheng R, Jin H, Zhang L, Liu Z, Zhang L. The structure-based optimization of 3-substituted indolin-2-one derivatives as potent and isoform-selective c-Jun N-terminal kinase 3 (JNK3) inhibitors and biological evaluation. Eur J Med Chem 2023; 250:115167. [PMID: 36764123 DOI: 10.1016/j.ejmech.2023.115167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
An indolin-2-(4-thiazolidinone) scaffold was previously shown to be a novel chemotype for JNK3 inhibition. However, more in vivo applications were limited due to the unconfirmed configuration and poor physicochemical properties. Here, the indolin-2-(4-thiazolidinone) scaffold validated the absolute configuration; substituents on the scaffold were optimized. Extensive structure activity relationship (SAR) studies were performed using kinase activity assays, thus leading to potent and highly selective JNK3 inhibitors with neuroprotective activity and good oral bioavailability. One lead compound, A53, was a potent and selective JNK3 inhibitor (IC50 = 78 nM) that had significant inhibition (>80% at 1 μM) to only JNK3 in a 398-kinase panel. A53 had low inhibition against JNK3 and high stability (t1/2(α) = 0.98 h, t1/2(β) = 2.74 h) during oral administration. A modeling study of A53 in human JNK3 showed that the indolin-2-(4-thiazolidinone)-based JNK3 inhibitor with a 5-position-substituted hydrophilic group offered improved kinase inhibition.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
10
|
Shuai W, Bu F, Zhu Y, Wu Y, Xiao H, Pan X, Zhang J, Sun Q, Wang G, Ouyang L. Discovery of Novel Indazole Chemotypes as Isoform-Selective JNK3 Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2023; 66:1273-1300. [PMID: 36649216 DOI: 10.1021/acs.jmedchem.2c01410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Wydra VR, Ditzinger RB, Seidler NJ, Hacker FW, Laufer SA. A patent review of MAPK inhibitors (2018 - present). Expert Opin Ther Pat 2023; 33:421-444. [PMID: 37501497 DOI: 10.1080/13543776.2023.2242584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The mitogen-activated protein kinase (MAPK) family consist of p38 MAP kinases, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs). They are involved in a multitude of diseases, including inflammatory, autoimmune, neurodegenerative, and metabolic diseases as well as cancer. In recent years, further developments in the field of MAPK-inhibitors have been reported, including an isoform or downstream target selective inhibition of MAPKs as well as target protein degradation approaches. AREAS COVERED This review summarizes newly patented MAPK-inhibitors that were claimed between 2018 and early 2023. Presented are the patents as well as their corresponding publications, the storyline of development, and clinical trials involving these compounds. This article elaborates a total of 27 patents, which were identified using established search engines. EXPERT OPINION Although industrial research on MAPK-inhibitors has been ongoing for more than 20 years, novel clinical trials of MAPK-inhibitors as potential drug candidates are still being conducted in the period under review. Recently reported inhibitors show an excellent selectivity profile and are even achieving selectivity between closely related isoforms. This progression offers the possibility to eliminate unwanted side effects and may finally lead to the approval of the first MAPK-inhibitor.
Collapse
Affiliation(s)
- Valentin R Wydra
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Raphael B Ditzinger
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Nico J Seidler
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Frederik W Hacker
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided & Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (Tücad2), Tübingen, Germany
| |
Collapse
|
12
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
13
|
Zhu Y, Shuai W, Zhao M, Pan X, Pei J, Wu Y, Bu F, Wang A, Ouyang L, Wang G. Unraveling the Design and Discovery of c-Jun N-Terminal Kinase Inhibitors and Their Therapeutic Potential in Human Diseases. J Med Chem 2022; 65:3758-3775. [PMID: 35200035 DOI: 10.1021/acs.jmedchem.1c01947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
c-Jun N-terminal kinases (JNKs), members of the mitogen-activated protein kinase (MAPK) family, are encoded by three genes: jnk1, jnk2, and jnk3. JNKs are involved in the pathogenesis and development of many diseases, such as neurodegenerative diseases, inflammation, and cancers. Therefore, JNKs have become important therapeutic targets. Many JNK inhibitors have been discovered, and some have been introduced into clinical trials. However, the study of isoform-selective JNK inhibitors is still a challenging task. To further develop novel JNK inhibitors with clinical value, a comprehensive understanding of JNKs and their corresponding inhibitors is required. In this Perspective, we introduced the JNK signaling pathways and reviewed different chemical types of JNK inhibitors, focusing on their structure-activity relationships and biological activities. The challenges and strategies for the development of JNK inhibitors are also discussed. It is hoped that this Perspective will provide valuable references for the development of novel selective JNK inhibitors.
Collapse
Affiliation(s)
- Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|