1
|
Luo Y, Xue H, Gao Y, Ji G, Wu T. Sphingosine kinase 2 in cancer: A review of its expression, function, and inhibitor development. Int J Biol Macromol 2025; 306:141392. [PMID: 39988169 DOI: 10.1016/j.ijbiomac.2025.141392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Cancer is a major public health problem facing contemporary society. Notwithstanding considerable progress in medicine in recent decades, a cure for numerous cancer kinds continues to be unattainable. Thus, the pursuit of innovative therapeutic targets and methodologies remains paramount in medical research. The advancement of lipidomics has progressively revealed the essential roles of lipid metabolic pathways. Sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) are essential molecules in sphingolipid metabolism, significantly influencing physiological functions. Two isoforms of SphK exist including SphK1 and SphK2, both of which exhibit significant expression levels within a spectrum of cancers. The involvement of SphK1 in carcinogenesis has been thoroughly documented, whereas the significance of SphK2 in cancer remains inadequately elucidated. This review retrospectively and extensively elucidates the expression and distribution of SphK2 in cancer, its methods of action, and advancements in inhibitor research, emphasizing the varied functions of the SphK2 in oncogenesis. The objective is to furnish novel insights for study and therapeutic applications concerning SphK2 in oncology.
Collapse
Affiliation(s)
- Yanqun Luo
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiping Xue
- Industrial Development Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Wang S, Huo Y, Zhang J, Li L, Cao F, Song Y, Zhang Y, Yang K. Design, synthesis, antitumor activity, and molecular dynamics simulations of novel sphingosine kinase 2 inhibitors. Bioorg Med Chem 2023; 93:117441. [PMID: 37586181 DOI: 10.1016/j.bmc.2023.117441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Targeting sphingosine kinase 2 (SphK2) has become a novel strategy for the treatment of cancer. However, potent and selective SphK2 inhibitors are rare. In our work, a series of novel SphK2 inhibitors were innovatively designed, synthesized and screened. Compound 12e showed the best inhibitory activity. Molecular dynamics simulations were carried out to analyze the detailed interactions between the SphK2 and its inhibitors. Moreover, 12e exhibited anti-proliferative activity in various cancer cells, and inhibited the migration of human breast cancer cells MCF-7.
Collapse
Affiliation(s)
- ShaSha Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jinmiao Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
5
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
6
|
Pashikanti S, Foster DJ, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Sphingosine Kinase 2 Inhibitors: Rigid Aliphatic Tail Derivatives Deliver Potent and Selective Analogues. ACS BIO & MED CHEM AU 2022; 2:469-489. [PMID: 36281302 PMCID: PMC9585524 DOI: 10.1021/acsbiomedchemau.2c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Sphingosine 1-phosphate
(S1P) is a pleiotropic signaling molecule
that interacts with five native G-protein coupled receptors (S1P1–5)
to regulate cell growth, survival, and proliferation. S1P has been
implicated in a variety of pathologies including cancer, kidney fibrosis,
and multiple sclerosis. As key mediators in the synthesis of S1P,
sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention
as viable targets for pharmacologic intervention. In this report,
we describe the design, synthesis, and biological evaluation of sphingosine
kinase 2 (SphK2) inhibitors with a focus on systematically introducing
rigid structures in the aliphatic lipid tail present in existing SphK2
inhibitors. Experimental as well as molecular modeling studies suggest
that conformationally restricted “lipophilic tail” analogues
bearing a bulky terminal moiety or an internal phenyl ring are useful
to complement the “J”-shaped sphingosine binding pocket
of SphK2. We identified 14c (SLP9101555) as a potent
SphK2 inhibitor (Ki = 90 nM) with 200-fold
selectivity over SphK1. Molecular docking studies indicated key interactions:
the cyclohexyl ring binding in the cleft deep in the pocket, a trifluoromethyl
group fitting in a small side cavity, and a hydrogen bond between
the guanidino group and Asp308 (amino acid numbering refers to human
SphK2 (isoform c) orthologue). In vitro studies using
U937 human histiocytic lymphoma cells showed marked decreases in extracellular
S1P levels in response to our SphK2 inhibitors. Administration of 14c (dose: 5 mg/kg) to mice resulted in a sustained increase
of circulating S1P levels, suggesting target engagement.
Collapse
Affiliation(s)
- Srinath Pashikanti
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, Idaho 83209, United States
| | - Daniel J. Foster
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - David R. Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
7
|
A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection. Viruses 2022; 14:v14061123. [PMID: 35746595 PMCID: PMC9229564 DOI: 10.3390/v14061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arbovirus in the alphavirus genus. Upon infection, it can cause severe joint pain that can last years in some patients, significantly affecting their quality of life. Currently, there are no vaccines or anti-viral therapies available against CHIKV. Its spread to the Americas from the eastern continents has substantially increased the count of the infected by millions. Thus, there is an urgent need to identify therapeutic targets for CHIKV treatment. A potential point of intervention is the sphingosine-1-phosphate (S1P) pathway. Conversion of sphingosine to S1P is catalyzed by Sphingosine kinases (SKs), which we previously showed to be crucial pro-viral host factor during CHIKV infection. In this study, we screened inhibitors of SKs and identified a novel potent inhibitor of CHIKV infection—SLL3071511. We showed that the pre-treatment of cells with SLL3071511 in vitro effectively inhibited CHIKV infection with an EC50 value of 2.91 µM under both prophylactic and therapeutic modes, significantly decreasing the viral gene expression and release of viral particles. Our studies suggest that targeting SKs is a viable approach for controlling CHIKV replication.
Collapse
|
8
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
9
|
Mousa LA, Hatmal MM, Taha M. Exploiting activity cliffs for building pharmacophore models and comparison with other pharmacophore generation methods: sphingosine kinase 1 as case study. J Comput Aided Mol Des 2022; 36:39-62. [PMID: 35059939 DOI: 10.1007/s10822-021-00435-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Activity cliffs (ACs) are defined as closely analogous compounds of significant affinity discrepancies against certain biotarget. In this paper we propose to use AC pair(s) for extracting valid binding pharmacophores through exposing corresponding protein complexes to stochastic deformation/relaxation followed by applying genetic algorithm/machine learning (GA-ML) for selecting optimal pharmacophore(s) that best classify a long list of inhibitors. We compared the performances of ligand-based and structure-based pharmacophores with counterparts generated by this newly introduced technique. Sphingosine kinase 1 (SPHK-1) was used as case study. SPHK-1 is a lipid kinase that plays pivotal role in the regulation of a variety of biological processes including, cell growth, apoptosis, and inflammation. The new approach proved to yield pharmacophore and ML models of comparable accuracies to established ligand-based and structure-based pharmacophores. The resulting pharmacophores and ML models were used to capture hits from the national cancer institute list of compounds and predict their bioactivity categories. Two hits of novel chemotypes showed selective and low micromolar inhibitory IC50 values against SPHK-1.
Collapse
Affiliation(s)
- Lubabah A Mousa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, PO Box 330127, Zarqa, 13133, Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
10
|
Ding T, Zhi Y, Xie W, Yao Q, Liu B. Rational design of SphK inhibitors using crystal structures aided by computer. Eur J Med Chem 2021; 213:113164. [PMID: 33454547 DOI: 10.1016/j.ejmech.2021.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sphingosine kinases (SphKs) are lipid kinases that catalyze the phosphorylation of sphingosine (Sph) to sphingosine-1-phosphate (S1P). As a bioactive lipid, S1P plays a role outside and inside the cell to regulate biological processes. The overexpression of SphKs is related to a variety of pathophysiological conditions. Targeting the S1P signaling pathway is a potential treatment strategy for many diseases. SphKs are key kinases of the S1P signaling pathway. The SphK family includes two isoforms: SphK1 and SphK2. Determination of the co-crystal structure of SphK1 with various inhibitors has laid a solid foundation for the development of small molecule inhibitors targeting SphKs. This paper reviews the differences and connections between the two isoforms and the structure of SphK1 crystals, especially the structure of its Sph "J-shaped" channel binding site. This review also summarizes the recent development of SphK1 and SphK2 selective inhibitors and the exploration of the unresolved SphK2 structure.
Collapse
Affiliation(s)
- Tiandi Ding
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| |
Collapse
|
11
|
Congdon M, Fritzemeier RG, Kharel Y, Brown AM, Serbulea V, Bevan DR, Lynch KR, Santos WL. Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. Eur J Med Chem 2020; 212:113121. [PMID: 33445156 DOI: 10.1016/j.ejmech.2020.113121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
Elevated levels of sphingosine 1-phosphate (S1P) and increased expression of sphingosine kinase isoforms (SphK1 and SphK2) have been implicated in a variety of disease states including cancer, inflammation, and autoimmunity. Consequently, the S1P signaling axis has become an attractive target for drug discovery. Selective inhibition of either SphK1 or SphK2 has been demonstrated to be effective in modulating S1P levels in animal models. While SphK1 inhibitors have received much attention, the development of potent and selective SphK2 inhibitors are emerging. Previously, our group reported a SphK2 naphthalene-based selective inhibitor, SLC5081308, which displays approximately 7-fold selectivity for hSphK2 over hSphK1 and has a SphK2 Ki value of 1.0 μM. To improve SphK2 potency and selectivity, we designed, synthesized, and evaluated a series of indole-based compounds derived from SLC5081308. After investigating substitution patterns around the indole ring, we discovered that 1,5-disubstitution promoted optimal binding in the SphK2 substrate binding site and subsequent inhibition of enzymatic activity. Our studies led to the identification of SLC5101465 (6r, SphK2 Ki = 90 nM, >110 fold selective for SphK2 over SphK1). Molecular modeling studies revealed key nonpolar interactions with Val308, Phe548, His556, and Cys533 and hydrogen bonds with both Asp211 and Asp308 as responsible for the high SphK2 inhibition and selectivity.
Collapse
Affiliation(s)
- Molly Congdon
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Russell G Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Anne M Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - David R Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
12
|
Li H, Sibley CD, Kharel Y, Huang T, Brown AM, Wonilowicz LG, Bevan DR, Lynch KR, Santos WL. Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors. Bioorg Med Chem 2020; 30:115941. [PMID: 33385956 DOI: 10.1016/j.bmc.2020.115941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023]
Abstract
The sphingosine 1-phosphate (S1P) signaling pathway is an attractive target for pharmacological manipulation due to its involvement in cancer progression and immune cell chemotaxis. The synthesis of S1P is catalyzed by the action of sphingosine kinase 1 or 2 (SphK1 or SphK2) on sphingosine and ATP. While potent and selective inhibitors of SphK1 or SphK2 have been reported, development of potent dual SphK1/SphK2 inhibitors are still needed. Towards this end, we report the structure-activity relationship profiling of 2-(hydroxymethyl)pyrrolidine-based inhibitors with 22d being the most potent dual SphK1/SphK2 inhibitor (SphK1 Ki = 0.679 μM, SphK2 Ki = 0.951 μM) reported in this series. 22d inhibited the growth of engineered Saccharomyces cerevisiae and decreased S1P levels in histiocytic lymphoma myeloid cell line (U937 cells), demonstrating inhibition of SphK1 and 2 in vitro. Molecular modeling studies of 22d docked inside the Sph binding pocket of both SphK1 and SphK2 indicate essential hydrogen bond between the 2-(hydroxymethyl)pyrrolidine head to interact with aspartic acid and serine residues near the ATP binding pocket, which provide the basis for dual inhibition. In addition, the dodecyl tail adopts a "J-shape" conformation found in crystal structure of sphingosine bound to SphK1. Collectively, these studies provide insight into the intermolecular interactions in the SphK1 and 2 active sites to achieve maximal dual inhibitory activity.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | | | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Laura G Wonilowicz
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
13
|
Sibley CD, Morris EA, Kharel Y, Brown AM, Huang T, Bevan DR, Lynch KR, Santos WL. Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. J Med Chem 2020; 63:1178-1198. [PMID: 31895563 DOI: 10.1021/acs.jmedchem.9b01508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sphingosine-1-phosphate (S1P) signaling pathway is an attractive drug target due to its involvement in immune cell chemotaxis and vascular integrity. The formation of S1P is catalyzed by sphingosine kinase 1 or 2 (SphK1 or SphK2) from sphingosine (Sph) and ATP. Inhibition of SphK1 and SphK2 to attenuate levels of S1P has been reported to be efficacious in animal models of diseases such as cancer, sickle cell disease, and renal fibrosis. While inhibitors of both SphKs have been reported, improvements in potency and selectivity are still needed. Toward that end, we performed structure-activity relationship profiling of 8 (SLM6031434) and discovered a heretofore unrecognized side cavity that increased inhibitor potency toward SphK2. Interrogating this region revealed that relatively small hydrophobic moieties are preferred, with 10 being the most potent SphK2-selective inhibitor (Ki = 89 nM, 73-fold SphK2-selective) with validated in vivo activity.
Collapse
Affiliation(s)
- Christopher D Sibley
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Emily A Morris
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yugesh Kharel
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Anne M Brown
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Tao Huang
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - David R Bevan
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kevin R Lynch
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
14
|
Abstract
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK.
| |
Collapse
|
15
|
Targeting sphingosine kinase 1 for the treatment of pulmonary arterial hypertension. Future Med Chem 2019; 11:2939-2953. [DOI: 10.4155/fmc-2019-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), characterized by high morbidity and mortality, is a serious hazard to human life. Until now, the long-term survival of the PAH patients is still suboptimal. Recently, sphingosine kinase 1 (SPHK1) has drawn more and more attention due to its essential role in the pulmonary vasoconstriction, remodeling of pulmonary blood vessels and right cardiac lesions in PAH patients, and this enzyme is regarded as a new target for the treatment of PAH. Here, we discussed the multifarious functions of SPHK1 in PAH physiology and pathogenesis. Moreover, the structural features of SPHK1 and binding modes with different inhibitors were summarized. Finally, recent advances in the medicinal chemistry research of SPHK1 inhibitors are presented.
Collapse
|
16
|
Worrell BL, Brown AM, Santos WL, Bevan DR. In Silico Characterization of Structural Distinctions between Isoforms of Human and Mouse Sphingosine Kinases for Accelerating Drug Discovery. J Chem Inf Model 2019; 59:2339-2351. [PMID: 30844267 DOI: 10.1021/acs.jcim.8b00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alterations in cellular signaling pathways are associated with multiple disease states including cancers and fibrosis. Current research efforts to attenuate cancers, specifically lymphatic cancer, focus on inhibition of two sphingosine kinase isoforms, sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2). Determining differences in structural and physicochemical binding site properties of SphKs is attractive to refine inhibitor potency and isoform selectivity. This study utilizes a predictive in silico approach to determine key differences in binding sites in SphK isoforms in human and mouse species. Homology modeling, molecular docking of inhibitors, analysis of binding pocket residue positions, development of pharmacophore models, and analysis of binding cavity volume were performed to determine isoform- and species-selective characteristics of the binding site and generate a system to rank potential inhibitors. Interestingly, docking studies showed compounds bound to mouse SphK1 in a manner more similar to human SphK2 than to human SphK1, indicating that SphKs in mice have structural properties distinct from humans that confounds prediction of ligand selectivity in mice. Our studies aid in the development and production of new compound classes by highlighting structural distinctions and identifying the role of key residues that cause observable, functional differences in isoforms and between orthologues.
Collapse
Affiliation(s)
- Brittney L Worrell
- Department of Biochemistry , Virginia Tech , 201 Engel Hall (0308) 340 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Anne M Brown
- Department of Biochemistry , Virginia Tech , 201 Engel Hall (0308) 340 West Campus Drive , Blacksburg , Virginia 24061 , United States.,University Libraries , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States , and.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - David R Bevan
- Department of Biochemistry , Virginia Tech , 201 Engel Hall (0308) 340 West Campus Drive , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
17
|
Adams DR, Tawati S, Berretta G, Rivas PL, Baiget J, Jiang Z, Alsfouk A, Mackay SP, Pyne NJ, Pyne S. Topographical Mapping of Isoform-Selectivity Determinants for J-Channel-Binding Inhibitors of Sphingosine Kinases 1 and 2. J Med Chem 2019; 62:3658-3676. [DOI: 10.1021/acs.jmedchem.9b00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- David R. Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Salha Tawati
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Giacomo Berretta
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Paula Lopez Rivas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Jessica Baiget
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Zhong Jiang
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Aisha Alsfouk
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| |
Collapse
|
18
|
Hasanifard L, Sheervalilou R, Majidinia M, Yousefi B. New insights into the roles and regulation of SphK2 as a therapeutic target in cancer chemoresistance. J Cell Physiol 2018; 234:8162-8181. [PMID: 30456838 DOI: 10.1002/jcp.27612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Chemoresistance is a complicated process developed by most cancers and accounts for the majority of relapse and metastasis in cancer. The main mechanisms of chemoresistance phenotype include increased expression and/or activated drug efflux pumps, altered DNA repair, altered metabolism of therapeutics as well as impaired apoptotic signaling pathways. Aberrant sphingolipid signaling has also recently received considerable attention in chemoresistance. Sphingolipid metabolites regulate main biological processes such as apoptosis, cell survival, proliferation, and differentiation. Two sphingosine kinases, SphK1 and SphK2, convert sphingosine to sphingosine-1-phosphate, an antiapoptotic bioactive lipid mediator. Numerous evidence has revealed the involvement of activated SphK1 in tumorigenesis and resistance, however, contradictory results have been found for the role of SphK2 in these functions. In some studies, overexpression of SphK2 suppressed cell growth and induced apoptosis. In contrast, some others have shown cell proliferation and tumor promotion effect for SphK2. Our understanding of the role of SphK2 in cancer does not have a sufficient integrity. The main focus of this review will be on the re-evaluation of the role of SphK2 in cell death and chemoresistance in light of our new understanding of molecular targeted therapy. We will also highlight the connections between SphK2 and the DNA damage response. Finally, we will provide our insight into the regulatory mechanisms of SphKs by two main categories, micro and long, noncoding RNAs as the novel players of cancer chemoresistance.
Collapse
Affiliation(s)
- Leili Hasanifard
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Childress ES, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. J Med Chem 2017; 60:3933-3957. [PMID: 28406646 PMCID: PMC6047346 DOI: 10.1021/acs.jmedchem.7b00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with its five G-protein coupled receptors (S1P1-5) to regulate cell growth and survival and has been implicated in a variety of diseases including cancer and sickle cell disease. As the key mediators in the synthesis of S1P, sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention as viable targets for pharmaceutical inhibition. In this article, we describe the design, synthesis, and biological evaluation of aminothiazole-based guanidine inhibitors of SphK. Surprisingly, combining features of reported SphK1 inhibitors generated SphK1/2 dual inhibitor 20l (SLC4011540) (hSphK1 Ki = 120 nM, hSphK2 Ki = 90 nM) and SphK2 inhibitor 20dd (SLC4101431) (Ki = 90 nM, 100-fold SphK2 selectivity). These compounds effectively decrease S1P levels in vitro. In vivo administration of 20dd validated that inhibition of SphK2 increases blood S1P levels.
Collapse
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Schnute ME, McReynolds MD, Carroll J, Chrencik J, Highkin MK, Iyanar K, Jerome G, Rains JW, Saabye M, Scholten JA, Yates M, Nagiec MM. Discovery of a Potent and Selective Sphingosine Kinase 1 Inhibitor through the Molecular Combination of Chemotype-Distinct Screening Hits. J Med Chem 2017; 60:2562-2572. [DOI: 10.1021/acs.jmedchem.7b00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Jill Chrencik
- Medicine
Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | | |
Collapse
|