1
|
Reynders M, Willems S, Marschner JA, Wein T, Merk D, Thorn‐Seshold O. A High-Quality Photoswitchable Probe that Selectively and Potently Regulates the Transcription Factor RORγ. Angew Chem Int Ed Engl 2024; 63:e202410139. [PMID: 39248642 PMCID: PMC11586699 DOI: 10.1002/anie.202410139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Retinoic acid receptor-related orphan receptor γ (RORγ) is a nuclear hormone receptor with multiple biological functions in circadian clock regulation, inflammation, and immunity. Its cyclic temporal role in circadian rhythms, and cell-specific activity in the immune system, make it an intriguing target for spatially and temporally localised pharmacology. To create tools that can study RORγ biology with appropriate spatiotemporal resolution, we designed light-dependent inverse RORγ agonists by building azobenzene photoswitches into ligand consensus structures. Optimizations gave photoswitchable RORγ inhibitors combining a large degree of potency photocontrol, with remarkable on-target potency, and excellent selectivity over related off-target receptors. This still rare combination of performance features distinguishes them as high quality photopharmaceutical probes, which can now serve as high precision tools to study the spatial and dynamic intricacies of RORγ action in signaling and in inflammatory disorders.
Collapse
Affiliation(s)
- Martin Reynders
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Sabine Willems
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Julian A. Marschner
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Thomas Wein
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Daniel Merk
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Oliver Thorn‐Seshold
- Faculty of Chemistry and Food ChemistryTechnical University of DresdenBergstr. 6601069DresdenGermany
| |
Collapse
|
2
|
Rolland Y, Dray C, Vellas B, Barreto PDS. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023; 149:155597. [PMID: 37348598 DOI: 10.1016/j.metabol.2023.155597] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Sarcopenia, defined as the loss of muscle mass and function, is a widely prevalent and severe condition in older adults. Since 2016, it is recognized as a disease. Strength exercise training and nutritional support are the frontline treatment of sarcopenia, with no drug currently approved for this indication. However, new therapeutic options are emerging. In this review, we evidenced that only very few trials have focused on sarcopenia/sarcopenic patients. Most drug trials were performed in different clinical older populations (e.g., men with hypogonadism, post-menopausal women at risk for osteoporosis), and their efficacy were tested separately on the components of sarcopenia (muscle mass, muscle strength and physical performances). Results from trials testing the effects of Testosterone, Selective Androgen Receptor Modulators (SARMs), Estrogen, Dehydroepiandrosterone (DHEA), Insulin-like Growth Factor-1 (IGF-1), Growth Hormone (GH), GH Secretagogue (GHS), drug targeting Myostatin and Activin receptor pathway, Vitamin D, Angiotensin Converting Enzyme inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs), or β-blockers, were compiled. Although some drugs have been effective in improving muscle mass and/or strength, this was not translated into clinically relevant improvements on physical performance. Finally, some promising molecules investigated in on-going clinical trials and in pre-clinical phase were summarized, including apelin and irisin.
Collapse
Affiliation(s)
- Yves Rolland
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France.
| | - Cedric Dray
- Université de Toulouse III Université Paul Sabatier, Toulouse, France; Restore, a geroscience and rejuvenation research center, UMR 1301-Inserm, 5070-CNRS EFS, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
3
|
Lesnak JB, Nakhla DS, Plumb AN, McMillan A, Saha S, Gupta N, Xu Y, Phruttiwanichakun P, Rasmussen L, Meyerholz DK, Salem AK, Sluka KA. Selective androgen receptor modulator microparticle formulation reverses muscle hyperalgesia in a mouse model of widespread muscle pain. Pain 2023; 164:1512-1523. [PMID: 36508167 PMCID: PMC10250561 DOI: 10.1097/j.pain.0000000000002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Chronic pain is a significant health problem associated with disability and reduced quality of life. Current management of chronic pain is inadequate with only modest effects of pharmacological interventions. Thus, there is a need for the generation of analgesics for treating chronic pain. Although preclinical and clinical studies demonstrate the analgesic effects of testosterone, clinical use of testosterone is limited by adverse androgenic effects. Selective androgen receptor modulators (SARMs) activate androgen receptors and overcome treatment limitations by minimizing androgenic side effects. Thus, we tested whether daily soluble SARMs or a SARM-loaded microparticle formulation alleviated muscle hyperalgesia in a mouse-model of widespread pain (male and female C57BL/6J mice). We tested whether the analgesic effects of the SARM-loaded microparticle formulation was mediated through androgen receptors by blocking androgen receptors with flutamide pellets. In vitro and in vivo release kinetics were determined for SARM-loaded microparticles. Safety and toxicity of SARM treatment was determined using serum cardiac and liver toxicity panels, heart histology, and conditioned place preference testing. Subcutaneous daily SARM administration, and 2 injections, 1 week apart, of SARM-loaded microparticles alleviated muscle hyperalgesia in both sexes and was prevented with flutamide treatment. Sustained release of SARM, from the microparticle formulation, was observed both in vitro and in vivo for 4 weeks. Selective androgen receptor modulator treatment produced no cardiac or liver toxicity and did not produce rewarding behaviors. These studies demonstrate that SARM-loaded microparticles, which release drug for a sustained period, alleviate muscle pain, are safe, and may serve as a potential therapeutic for chronic muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - David S. Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Ashley N. Plumb
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - Alexandra McMillan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | | | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| |
Collapse
|
4
|
A one-pot approach to novel α-trifluoromethylated coumarin-bearing tertiary alcohols promoted by CH3COOH/NH4OAc via consecutive ring-opening/aldol sequence. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Abstract
The androgen receptor (AR) plays a key role in the maintenance of muscle and bone and the support of male sexual-related functions, as well as in the progression of prostate cancer. Accordingly, AR-targeted therapies have been developed for the treatment of related human diseases and conditions. AR agonists are an important class of drugs in the treatment of bone loss and muscle atrophy. AR antagonists have also been developed for the treatment of prostate cancer, including metastatic castration-resistant prostate cancer (mCRPC). Additionally, selective AR degraders (SARDs) have been reported. More recently, heterobifunctional degrader molecules of AR have been developed, and four such compounds are now in clinical development for the treatment of human prostate cancer. This review attempts to summarize the different types of compounds designed to target AR and the current frontiers of research on this important therapeutic target.
Collapse
Affiliation(s)
- Weiguo Xiang
- Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Desai A, Yassin M, Cayetano A, Tharakan T, Jayasena CN, Minhas S. Understanding and managing the suppression of spermatogenesis caused by testosterone replacement therapy (TRT) and anabolic–androgenic steroids (AAS). Ther Adv Urol 2022; 14:17562872221105017. [PMID: 35783920 PMCID: PMC9243576 DOI: 10.1177/17562872221105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Use of testosterone replacement therapy (TRT) and anabolic–androgenic steroids
(AAS) has increased over the last 20 years, coinciding with an increase in men
presenting with infertility and hypogonadism. Both agents have a detrimental
effect on spermatogenesis and pose a clinical challenge in the setting of
hypogonadism and infertility. Adding to this challenge is the paucity of data
describing recovery of spermatogenesis on stopping such agents. The unwanted
systemic side effects of these agents have driven the development of novel
agents such as selective androgen receptor modulators (SARMs). Data showing
natural recovery of spermatogenesis following cessation of TRT are limited to
observational studies. Largely, these have shown spontaneous recovery of
spermatogenesis after cessation. Contemporary literature suggests the time frame
for this recovery is highly variable and dependent on several factors including
baseline testicular function, duration of drug use and age at cessation. In some
men, drug cessation alone may not achieve spontaneous recovery, necessitating
hormonal stimulation with selective oestrogen receptor modulators
(SERMs)/gonadotropin therapy or even the need for assisted reproductive
techniques. However, there are limited prospective randomized data on the role
of hormonal stimulation in this clinical setting. The use of hormonal
stimulation with agents such as gonadotropins, SERMs, aromatase inhibitors and
assisted reproductive techniques should form part of the counselling process in
this cohort of hypogonadal infertile men. Moreover, counselling men regarding
the detrimental effects of TRT/AAS on fertility is very important, as is the
need for robust randomized studies assessing the long-term effects of novel
agents such as SARMs and the true efficacy of gonadotropins in promoting
recovery of spermatogenesis.
Collapse
Affiliation(s)
- Ankit Desai
- Department of Andrology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK
| | - Musaab Yassin
- Department of Andrology, Imperial Healthcare NHS Trust, London, UK
| | - Axel Cayetano
- Department of Andrology, Imperial Healthcare NHS Trust, London, UK
| | - Tharu Tharakan
- Department of Andrology, Imperial Healthcare NHS Trust, London, UK
| | - Channa N. Jayasena
- Department of Reproductive Endocrinology, Imperial Healthcare NHS Trust, London, UK
| | - Suks Minhas
- Department of Andrology, Imperial Healthcare NHS Trust, London, UK
| |
Collapse
|
7
|
Mani SB, Clavijo RI. Medical Treatment of Hypogonadism in Men. Urol Clin North Am 2022; 49:197-207. [DOI: 10.1016/j.ucl.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Kowalczyk K, Torres-Elguera JC, Jarek A, Konopka A, Kwiatkowska D, Bulska E. In vitro metabolic studies of novel selective androgen receptor modulators and their use for doping control analysis. Drug Test Anal 2021; 14:122-136. [PMID: 34414676 DOI: 10.1002/dta.3151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Katarzyna Kowalczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.,Polish Anti-Doping Laboratory, Warsaw, Poland
| | | | - Anna Jarek
- Polish Anti-Doping Laboratory, Warsaw, Poland
| | - Anna Konopka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
So YM, Wong JKY, Choi TLS, Prabhu A, Stewart B, Farrington AF, Robinson P, Wan TSM, Ho ENM. Metabolic studies of selective androgen receptor modulators RAD140 and S-23 in horses. Drug Test Anal 2020; 13:318-337. [PMID: 32853476 DOI: 10.1002/dta.2920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 01/27/2023]
Abstract
This paper describes the studies of the in vitro biotransformation of two selective androgen receptor modulators (SARMs), namely, RAD140 and S-23, and the in vivo metabolism of RAD140 in horses using ultra-high performance liquid chromatography-high resolution mass spectrometry. in vitro metabolic studies of RAD140 and S-23 were performed using homogenised horse liver. The more prominent in vitro biotransformation pathways for RAD140 included hydrolysis, hydroxylation, glucuronidation and sulfation. Metabolic pathways for S-23 were similar to those for other arylpropionamide-based SARMs. The administration study of RAD140 was carried out using three retired thoroughbred geldings. RAD140 and the majority of the identified in vitro metabolites were detected in post-administration urine samples. For controlling the misuse of RAD140 in horses, RAD140 and its metabolite in sulfate form gave the longest detection time in hydrolysed urine and could be detected for up to 6 days post-administration. In plasma, RAD140 itself gave the longest detection time of up to 13 days. Apart from RAD140 glucuronide, the metabolites of RAD140 described herein have never been reported before.
Collapse
Affiliation(s)
- Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Timmy L S Choi
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Anil Prabhu
- Department of Veterinary Regulation, Welfare & Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Brian Stewart
- Department of Veterinary Regulation, Welfare & Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Adrian F Farrington
- Department of Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Paul Robinson
- Department of Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| |
Collapse
|
11
|
Christiansen AR, Lipshultz LI, Hotaling JM, Pastuszak AW. Selective androgen receptor modulators: the future of androgen therapy? Transl Androl Urol 2020; 9:S135-S148. [PMID: 32257854 PMCID: PMC7108998 DOI: 10.21037/tau.2019.11.02] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Selective androgen receptor modulators (SARMs) are small molecule drugs that function as either androgen receptor (AR) agonists or antagonists. Variability in AR regulatory proteins in target tissues permits SARMs to selectively elicit anabolic benefits while eschewing the pitfalls of traditional androgen therapy. SARMs have few side effects and excellent oral and transdermal bioavailability and may, therefore, represent viable alternatives to current androgen therapies. SARMs have been studied as possible therapies for many conditions, including osteoporosis, Alzheimer’s disease, breast cancer, stress urinary incontinence (SUI), prostate cancer (PCa), benign prostatic hyperplasia (BPH), male contraception, hypogonadism, Duchenne muscular dystrophy (DMD), and sarcopenia/muscle wasting/cancer cachexia. While there are no indications for SARMs currently approved by the Food and Drug Administration (FDA), many potential applications are still being explored, and results are promising. In this review, we examine the literature assessing the use of SARMS for a number of indications.
Collapse
Affiliation(s)
| | - Larry I Lipshultz
- Scott Department of Urology.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Solomon ZJ, Mirabal JR, Mazur DJ, Kohn TP, Lipshultz LI, Pastuszak AW. Selective Androgen Receptor Modulators: Current Knowledge and Clinical Applications. Sex Med Rev 2018; 7:84-94. [PMID: 30503797 DOI: 10.1016/j.sxmr.2018.09.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/07/2018] [Accepted: 09/21/2018] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Selective androgen receptor modulators (SARMs) differentially bind to androgen receptors depending on each SARM's chemical structure. As a result, SARMs result in anabolic cellular activity while avoiding many of the side effects of currently available anabolic steroids. SARMs have been studied in the treatment of breast cancer and cachexia and have also been used as performance-enhancing agents. Here, we evaluate and summarize the current literature on SARMs. AIM To present the background, mechanisms, current and potential clinical applications, as well as risks and benefits of SARMs. METHODS A literature review was performed in MEDLINE using the terms selective androgen receptor modulator, hypogonadism, cachexia, breast cancer, benign prostatic hyperplasia, libido, and lean muscle mass. Both basic research and clinical studies were included. MAIN OUTCOME MEASURE To complete a review of peer-reviewed literature. RESULTS Although there are currently no U.S. Food and Drug Agency-approved indications for SARMs, investigators are exploring the potential uses for these compounds. Basic research has focused on the pharmacokinetics and pharmacodynamics of these agents, demonstrating good availability with a paucity of drug interactions. Early clinical studies have demonstrated potential uses for SARMs in the treatment of cancer-related cachexia, benign prostatic hyperplasia (BPH), hypogonadism, and breast cancer, with positive results. CONCLUSION SARMs have numerous possible clinical applications, with promise for the safe use in the treatment of cachexia, BPH, hypogonadism, breast cancer, and prostate cancer. Solomon ZJ, Mirabal JR, Mazur DJ, et al. Selective Androgen Receptor Modulators: Current Knowledge and Clinical Applications. Sex Med Rev 2019;7:84-94.
Collapse
Affiliation(s)
| | | | | | - Taylor P Kohn
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Larry I Lipshultz
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA; Urology Associates, Denver, CO, USA
| | - Alexander W Pastuszak
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
14
|
Alloui M, Belaidi S, Othmani H, Jaidane NE, Hochlaf M. Imidazole derivatives as angiotensin II AT1 receptor blockers: Benchmarks, drug-like calculations and quantitative structure-activity relationships modeling. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Lynch C, Sakamuru S, Huang R, Stavreva DA, Varticovski L, Hager GL, Judson RS, Houck KA, Kleinstreuer NC, Casey W, Paules RS, Simeonov A, Xia M. Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology 2017; 385:48-58. [PMID: 28478275 PMCID: PMC6135100 DOI: 10.1016/j.tox.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/27/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
The androgen receptor (AR, NR3C4) is a nuclear receptor whose main function is acting as a transcription factor regulating gene expression for male sexual development and maintaining accessory sexual organ function. It is also a necessary component of female fertility by affecting the functionality of ovarian follicles and ovulation. Pathological processes involving AR include Kennedy's disease and Klinefelter's syndrome, as well as prostate, ovarian, and testicular cancer. Strict regulation of sex hormone signaling is required for normal reproductive organ development and function. Therefore, testing small molecules for their ability to modulate AR is a first step in identifying potential endocrine disruptors. We screened the Tox21 10K compound library in a quantitative high-throughput format to identify activators of AR using two reporter gene cell lines, AR β-lactamase (AR-bla) and AR-luciferase (AR-luc). Seventy-five compounds identified through the primary assay were characterized as potential agonists or inactives through confirmation screens and secondary assays. Biochemical binding and AR nuclear translocation assays were performed to confirm direct binding and activation of AR from these compounds. The top seventeen compounds identified were found to bind to AR, and sixteen of them translocated AR from the cytoplasm into the nucleus. Five potentially novel or not well-characterized AR agonists were discovered through primary and follow-up studies. We have identified multiple AR activators, including known AR agonists such as testosterone, as well as novel/not well-known compounds such as prulifloxacin. The information gained from the current study can be directly used to prioritize compounds for further in-depth toxicological evaluations, as well as their potential to disrupt the endocrine system via AR activation.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicole C Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC, USA
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Wang P, Li HF, Zhao JZ, Du ZH, Da CS. Organocatalytic Enantioselective Cross-Aldol Reaction of o-Hydroxyarylketones and Trifluoromethyl Ketones. Org Lett 2017; 19:2634-2637. [DOI: 10.1021/acs.orglett.7b00828] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei Wang
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong-Feng Li
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia-Zhen Zhao
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Hong Du
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao-Shan Da
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- State
Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Key
Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Tang Y, Yu Q, Ma S. Efficient trifluoromethylation via the cyclopropanation of allenes and subsequent C–C bond cleavage. Org Chem Front 2017. [DOI: 10.1039/c7qo00419b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trifluoromethyl has been efficiently incorporated into organic skeletons via allene cyclization and C–C bond cleavage.
Collapse
Affiliation(s)
- Yang Tang
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Qiong Yu
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| |
Collapse
|
18
|
Meanwell NA. Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space. Chem Res Toxicol 2016; 29:564-616. [DOI: 10.1021/acs.chemrestox.6b00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut 06492, United States
| |
Collapse
|