1
|
Jain RK, Hall CK, Santiso EE. In Silico Structural Comparison of Aromatic and Aliphatic Chiral Peptoid Oligomers. J Phys Chem B 2024; 128:11164-11173. [PMID: 39494622 DOI: 10.1021/acs.jpcb.4c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Atomistic simulations of peptoids have the capability to predict structure-property relationships, depending on the accuracy of the associated force field. This work presents an addendum to the CGenFF-NTOID peptoid force field for aliphatic side chains. We develop parameters for two aliphatic side chains, RN1-tertiary butylethyl glycine (r1tbe) and SN1-tertiary butylethyl glycine (s1tbe). Enhanced sampled (well-tempered metadynamics) atomistic simulations are performed using CGenFF-NTOID to determine the monomer structural preferences for these side chains. The free energy minima attained through these simulations are compared with structural observations obtained from experiments. We also compare the structural preferences of aliphatic s1tbe and aromatic SN1-naphthylethyl glycine (s1ne). This is done through parallel bias metadynamics on monomers and pentamers of s1tbe and s1ne. The structural observations through simulations are also compared with available experimental metrics of the dihedral angles and pitch. The pentamer minima structures are also compared with ab initio optimized structures, which show excellent agreement. This comparison illustrates alternatives to aromatic side chains that can be used to stabilize peptoid secondary structures. The developed parameters help to increase the diversity of peptoid side chains available for materials discovery through computational studies.
Collapse
Affiliation(s)
- Rakshit Kumar Jain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
2
|
Rafiq M, Javaid A, Kanwal A, Anwar A, Khan IH, Kanwal Q, Cheng C. GC-MS analysis and antifungal potential of flower extract of Acacia nilotica subsp. Indica against Macrophomina phaseolina. Microb Pathog 2024; 194:106819. [PMID: 39067493 DOI: 10.1016/j.micpath.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Macrophomina phaseolina is a wide host ranged soil-borne fungal plant pathogen. It infects more than 500 host plant species belonging to 100 families. Many important oil-seed and leguminous crops are known to be attacked by this devastating plant pathogen. In the present study, antifungal potential of flowers of a leguminous tree Acacia nilotica subsp. indica, was assessed against this pathogen through bioassays guided fractionation. Initially, methanolic extracts of 1 %-5 % of leaf, flower, root-bark and stem-bark of the plant species under consideration were evaluated for their antifungal potential against the target pathogen. Among these, the best antifungal activity was shown by flower extract. The reduction in growth of the test fungal strain was 27-49 %, 4-40 % and 2-27 % due to flower, root-bark and leaf extracts, respectivey, over control. Flower extract was partitioned using n-hexane, chloroform, ethyl acetate and n-butanol as the solvents. Bioassays guided study of these fractions of methanolic extract of flower revealed that high antifungal potential was shown by n-hexane and chloroform fractions against M. phaseolina causing 26-53 % and 28-50 % decline in fungal biomass, respectively, as compared to that of control. GC-MS analysis of chloroform fraction revealed the presence of 27 compounds in this fraction. Among these cyclopentanol,-1-methyl (10.93 %) was the predominant compound followed by methyl, 4,4-dimethyl butanoate (7.04 %), 1-pentanol (6.80 %), 2-propanol, 1-cyclopropyl (6.11 %), 1H,imidazole-4-5-dihydro-2-methyl (5.93 %), trichloroethane (5.91 %), carbonic acid-ethyl hexyl ester (4.59 %), 1,4-butandiol,2,3-bis(methylene)- (4.54 %) and [S]-3,4-dimethyl pentanol (4.48 %).
Collapse
Affiliation(s)
- Muhammad Rafiq
- Jiangxi Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| | - Arshad Javaid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan.
| | - Ammara Kanwal
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan.
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| | - Iqra Haider Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan.
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Raiwind Road Campus, Lahore, Pakistan.
| | - Chunsong Cheng
- Jiangxi Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| |
Collapse
|
3
|
Jain RK, Hall CK, Santiso EE. Using Enhanced Sampling Simulations to Study the Conformational Space of Chiral Aromatic Peptoid Monomers. J Chem Theory Comput 2023; 19:9457-9467. [PMID: 37937823 DOI: 10.1021/acs.jctc.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Peptoids, or N-substituted glycines, are peptide-like materials that form a wide variety of secondary structures owing to their enhanced flexibility and a diverse collection of possible side chains. Compared to that of peptides, peptoids have a substantially more complex conformational landscape. This is mainly due to the ability of the peptoid amide bond to exist in both cis- and trans-conformations. This makes conventional molecular dynamics simulations and even some enhanced sampling approaches unable to sample the complete energy landscapes. In this article, we present an extension to the CGenFF-NTOID peptoid atomistic forcefield by adding parameters for four side chains to the previously available collection. We employ explicit solvent well-tempered metadynamics simulations to optimize our forcefield parameters and parallel bias metadynamics to study the cis-trans isomerism for SN1-phenylethyl (s1pe) and SN1-naphthylethyl (s1ne) peptoid monomers, the free energy minima generated from which are validated with available experimental data. In the absence of experimental data, we supported our atomistic simulations with ab initio calculations. This work represents an important step toward the computational design of peptoid-based materials.
Collapse
Affiliation(s)
- Rakshit Kumar Jain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Valdes O, Ali A, Carrasco-Sánchez V, Cabrera-Barjas G, Duran-Lara E, Ibrahim M, Ahmad S, Moreno R, Concepción O, de la Torre AF, Abrar M, Morales-Quintana L, Abril D. Ugi efficient synthesis of novel N-alkylated lipopeptides, antimicrobial properties and computational studies in Staphylococcus aureus via MurD antibacterial target. Comput Biol Chem 2023; 106:107932. [PMID: 37487249 DOI: 10.1016/j.compbiolchem.2023.107932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Lipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme. The FT94, FT95 and FT97 compounds revealed binding affinity scores of -8.585 kcal mol- 1, -7.660 kcal mol- 1 and -7.351 kcal mol- 1, respectively. Furthermore, dynamics analysis pointed the systems high structure dynamics. The docking and simulation results were validated by binding free energies, demonstrating solid intermolecular interactions and in the assay in vitro, the Minimal Inhibitory Concentration (MIC) of FT97 to Staphylococcus aureus (S. aureus) was 62.5 μg/mL. In conclusion, a moderate inhibitory response of peptoid FT97 was observed against the Gram-positive bacteria, S. aureus and B. cereus.
Collapse
Affiliation(s)
- Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile.
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Verónica Carrasco-Sánchez
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, 2 Norte 681, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, Concepción, CP 4080871, Chile
| | - Esteban Duran-Lara
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile; Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Rachel Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Odette Concepción
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Muhammad Abrar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
5
|
Kumar V, Lin JS, Molchanova N, Fortkort JA, Reckmann C, Bräse S, Jenssen H, Barron AE, Chugh A. Membrane-acting biomimetic peptoids against visceral leishmaniasis. FEBS Open Bio 2023; 13:519-531. [PMID: 36683396 PMCID: PMC9989931 DOI: 10.1002/2211-5463.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Visceral leishmaniasis (VL) is among the most neglected tropical diseases in the world. Drug cell permeability is essential for killing the intracellular residing parasites responsible for VL, making cell-permeating peptides a logical choice to address VL. Unfortunately, the limited biological stability of peptides restricts their usage. Sequence-specific oligo-N-substituted glycines ('peptoids') are a class of peptide mimics that offers an excellent alternative to peptides in terms of ease of synthesis and good biostability. We tested peptoids against the parasite Leishmania donovani in both forms, that is, intracellular amastigotes and promastigotes. N-alkyl hydrophobic chain addition (lipidation) and bromination of oligopeptoids yielded compounds with good antileishmanial activity against both forms, showing the promise of these antiparasitic peptoids as potential drug candidates to treat VL.
Collapse
Affiliation(s)
- Vivek Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, CA, USA
| | | | - John A Fortkort
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, CA, USA
| | - Carolin Reckmann
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Denmark
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, CA, USA
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| |
Collapse
|
6
|
A Review on the Synthesis of Polypeptoids. Catalysts 2023. [DOI: 10.3390/catal13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyeptoids are a promising class of polypeptide mimetic biopolymers based on N-substituted glycine backbones. Because of the high designability of their side chains, polypeptoids have a wide range of applications in surface antifouling, biosensing, drug delivery, and stimuli-responsive materials. To better control the structures and properties of polypeptoids, it is necessary to understand different methods for polypeptoid synthesis. This review paper summarized and discussed the main synthesis methods of polypeptoids: the solid-phase submonomer synthesis method, ring-opening polymerization method and Ugi reaction method.
Collapse
|
7
|
Pratt EJ, Mancera-Andrade EI, Bicker KL. Synthesis and Characterization of Derivatives of the Antifungal Peptoid RMG8-8. ACS OMEGA 2022; 7:36663-36671. [PMID: 36278036 PMCID: PMC9583092 DOI: 10.1021/acsomega.2c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cryptococcal meningitis, caused by the fungal pathogen Cryptococcus neoformans, is a devastating disease with a mortality rate of over 80%. Due to the increasing prevalence of resistance to antifungals and the high mammalian toxicity of current treatments, the development of new antifungal therapies is vital. In an effort to improve the biological properties of a previously discovered antifungal peptoid, termed RMG8-8, an iterative structure-activity relationship study was conducted. This three-round study sought to optimize the structure of RMG8-8 by focusing on three main structural components: the lipophilic tail, aliphatic side chains, and aromatic side chains. In addition to antifungal testing against C. neoformans, cytotoxicity testing was also performed on all derivatives against human liver cells, and select promising compounds were tested for hemolytic activity against human red blood cells. A number of derivatives containing unique aliphatic or aromatic side chains had antifungal activity similar to RMG8-8 (MIC = 1.56 μg/mL), but all of these compounds were more toxic than RMG8-8. While no derivative was improved across all biological tests, modest improvements were made to the hemolytic activity with compound 9, containing isobutyl side chains in positions 2 and 5, compared to RMG8-8 (HC10 = 130 and 75 μg/mL, respectively). While this study did not yield a dramatically optimized RMG8-8 derivative, this result was not totally unexpected given the remarkable selectivity of this compound from discovery. Nonetheless, this study is an important step in the development of RMG8-8 as a viable antifungal therapeutic.
Collapse
|
8
|
Green RM, Bicker KL. Development of an Anti-Biofilm Screening Technique Leads to the Discovery of a Peptoid with Efficacy against Candida albicans. ACS Infect Dis 2022; 8:310-320. [PMID: 35107257 PMCID: PMC9972850 DOI: 10.1021/acsinfecdis.1c00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria and fungi can secrete and reside within a complex polysaccharide matrix, forming a biofilm that protects these pathogens from the immune response and conventional antibiotics. Because many microbial pathogens grow within biofilms in clinical settings, there is a need for antimicrobial agents effective against biofilm-protected infections. We report the adaptation of a phenotypic high-throughput assay for discovering antimicrobial peptoids toward the screening of combinatorial libraries against established biofilms. This method, termed the Inverted Peptoid Library Agar Diffusion (iPLAD) assay, required optimization of growth media, reducing reagent, and fungal viability reporter. Once optimized, iPLAD was used to screen a combinatorial peptoid library against Candida albicans, a biofilm-forming fungal pathogen responsible for most hospital-acquired infections. This screening resulted in a lipopeptoid termed RMG9-11 with excellent activity against several species of Candida, including drug-resistant strains of C. albicans and the emerging and dangerous C. auris. Additionally, the cytotoxicity of RMG9-11 against several mammalian cell lines was minimal. This work provides a new method for the identification of compounds effective against biofilm-protected pathogens and demonstrates its utility by identifying a promising anti-Candida peptoid.
Collapse
Affiliation(s)
- R. Madison Green
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Kevin L. Bicker
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
9
|
Choi JW, Lee KT, Kim S, Lee YR, Kim HJ, Seo KJ, Lee MH, Yeon SK, Jang BK, Park SJ, Kim HJ, Park JH, Kim D, Lee DG, Cheong E, Lee JS, Bahn YS, Park KD. Optimization and Evaluation of Novel Antifungal Agents for the Treatment of Fungal Infection. J Med Chem 2021; 64:15912-15935. [PMID: 34662122 DOI: 10.1021/acs.jmedchem.1c01299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to the increased morbidity and mortality by fungal infections and the emergence of severe antifungal resistance, there is an urgent need for new antifungal agents. Here, we screened for antifungal activity in our in-house library through the minimum inhibitory concentration test and derived two hit compounds with moderate antifungal activities. The hit compounds' antifungal activities and drug-like properties were optimized by substituting various aryl ring, alkyl chain, and methyl groups. Among the optimized compounds, 22h was the most promising candidate with good drug-like properties and exhibited potent fast-acting fungicidal antifungal effects against various fungal pathogens and synergistic antifungal activities with some known antifungal drugs. Additionally, 22h was further confirmed to disturb fungal cell wall integrity by activating multiple cell wall integrity pathways. Furthermore, 22h exerted significant antifungal efficacy in both the subcutaneous infection mouse model and ex vivo human nail infection model.
Collapse
Affiliation(s)
- Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ye Rim Lee
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeon Ji Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung Jin Seo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myung Ha Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seul Ki Yeon
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Bo Ko Jang
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Sun Jun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dahee Kim
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Dong-Gi Lee
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Seung Lee
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Xie J, Zhou M, Qian Y, Cong Z, Chen S, Zhang W, Jiang W, Dai C, Shao N, Ji Z, Zou J, Xiao X, Liu L, Chen M, Li J, Liu R. Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nat Commun 2021; 12:5898. [PMID: 34625571 PMCID: PMC8501045 DOI: 10.1038/s41467-021-26221-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance. Antibiotic resistance is a major issue in medicine and new antimicrobials for treating resistant infection are needed. Here, the authors report on antibacterial peptoid polymers, prepared via NNCA ring-opening polymerization, demonstrating antibacterial function against MRSA in vitro and in in vivo infection models.
Collapse
Affiliation(s)
- Jiayang Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuxin Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Sheng Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Chengzhi Dai
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China. .,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
11
|
Green RM, Bicker KL. Discovery and Characterization of a Rapidly Fungicidal and Minimally Toxic Peptoid against Cryptococcus neoformans. ACS Med Chem Lett 2021; 12:1470-1477. [PMID: 34531956 DOI: 10.1021/acsmedchemlett.1c00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
A limited number of antifungals are available to treat infections caused by fungal pathogens such as Cryptococcus neoformans and Candida albicans. Current clinical antifungals are generally toxic, and increasing resistance to these therapies is being observed, necessitating new, effective, and safe antifungals. Peptoids, or N-substituted glycines, have shown promise as antimicrobial agents against bacteria, fungi, and parasites. Herein we report the discovery and characterization of an antifungal peptoid termed RMG8-8. This compound was originally discovered from a combinatorial peptoid library using the Peptoid Library Agar Diffusion assay to screen against C. albicans. Though the efficacy of RMG8-8 against C. albicans was modest (25 μg/mL), the efficacy against C. neoformans was excellent (1.56 μg/mL). Cytotoxicity against a panel of cell lines proved RMG8-8 to be minimally toxic, with selectivity ratios ranging from 34 to 121. Additional studies were carried out to determine the pharmacological importance of each peptoid monomer in RMG8-8, characterize the killing kinetics of this compound against C. neoformans (t 1/2 = 6.5 min), and evaluate plasma protein binding and proteolytic stability. Finally, a liposomal lysis assay suggested that RMG8-8 likely exerts fungal killing through membrane permeabilization, the generally accepted mechanism of action for most antimicrobial peptides and peptoids.
Collapse
Affiliation(s)
- R. Madison Green
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main St., Murfreesboro, Tennessee 37132, United States
| | - Kevin L. Bicker
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main St., Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
12
|
Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1). Biochem J 2021; 477:2971-2980. [PMID: 32716034 DOI: 10.1042/bcj20200534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Methylation of arginine residues occurs on a number of protein substrates, most notably the N-terminal tails of histones, and is catalyzed by a family of enzymes called the protein arginine methyltransferases (PRMTs). This modification can lead to transcriptional activation or repression of cancer-related genes. To date, a number of inhibitors, based on natural peptide substrates, have been developed for the PRMT family of enzymes. However, because peptides are easily degraded in vivo, the utility of these inhibitors as potential therapeutics is limited. The use of peptoids, which are peptide mimetics where the amino acid side chain is attached to the nitrogen in the amide backbone instead of the α-carbon, may circumvent the problems associated with peptide degradation. Given the structural similarities, peptoid scaffolds may provide enhanced stability, while preserving the mechanism of action. Herein, we have identified that peptoids based on natural peptide substrates are not catalyzed to the product by PRMT1, but instead are inhibitors of this enzyme. Reducing the length of the peptoid reduces inhibition and suggest the residues distal from the site of modification are important for binding. Furthermore, a positive charge on the N-terminus helps promote binding and improves inhibition. Selectivity among family members is likely possible based on inhibition being moderately selective for PRMT1 over PRMT5 and provides a scaffold that can be used to develop pharmaceuticals against this class of enzymes.
Collapse
|
13
|
Nam HY, Choi J, Kumar SD, Nielsen JE, Kyeong M, Wang S, Kang D, Lee Y, Lee J, Yoon MH, Hong S, Lund R, Jenssen H, Shin SY, Seo J. Helicity Modulation Improves the Selectivity of Antimicrobial Peptoids. ACS Infect Dis 2020; 6:2732-2744. [PMID: 32865961 DOI: 10.1021/acsinfecdis.0c00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modulation of conformational flexibility in antimicrobial peptides (AMPs) has been investigated as a strategy to improve their efficacy against bacterial pathogens while reducing their toxicity. Here, we synthesized a library of helicity-modulated antimicrobial peptoids by the position-specific incorporation of helix-inducing monomers. The peptoids displayed minimal variations in hydrophobicity, which permitted the specific assessment of the effect of conformational differences on antimicrobial activity and selectivity. Among the moderately helical peptoids, the most dramatic increase in selectivity was observed in peptoid 17, providing more than a 20-fold increase compared to fully helical peptoid 1. Peptoid 17 had potent broad-spectrum antimicrobial activity that included clinically isolated multi-drug-resistant pathogens. Compared to pexiganan AMP, 17 showed superior metabolic stability, which could potentially reduce the dosage needed, alleviating toxicity. Dye-uptake assays and high-resolution imaging revealed that the antimicrobial activity of 17 was, as with many AMPs, mainly due to membrane disruption. However, the high selectivity of 17 reflected its unique conformational characteristics, with differential interactions between bacterial and erythrocyte membranes. Our results suggest a way to distinguish different membrane compositions solely by helicity modulation, thereby improving the selectivity toward bacterial cells with the maintenance of potent and broad-spectrum activity.
Collapse
Affiliation(s)
| | | | - S. Dinesh Kumar
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | | | | | | | | | | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | | | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Song Yub Shin
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | |
Collapse
|
14
|
Mani Chandrika KVS, Sharma S. Promising antifungal agents: A minireview. Bioorg Med Chem 2020; 28:115398. [PMID: 32115335 DOI: 10.1016/j.bmc.2020.115398] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
Abstract
In the recent past, prevalence of life threatening fungal diseases have increased rapidly in immune-compromised cases such as acquired immunodeficiency syndrome (AIDS), cancer, organ transplant etc. Side by side, the appearance of drug resistance to the presently available antifungal therapeutics is on a rapid rise. It has become a top priority for the academia and pharmaceutical industries to develop new antifungal agents able to combat this resistance, and at the same time, possess potential broad spectrum of activity and minimum toxicity. An understanding of the pharmacological interactions between antifungal agents and their targets offers opportunities for design of new therapeutics. This review discusses the various methodology of drug design, structure activity relationships (SARs), and mode of action of variety of new antifungal agents.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India
| | - Sahida Sharma
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India.
| |
Collapse
|
15
|
Bicker KL, Cobb SL. Recent advances in the development of anti-infective peptoids. Chem Commun (Camb) 2020; 56:11158-11168. [DOI: 10.1039/d0cc04704j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This feature article highlights the progress that has been made towards the development of novel anti-infective peptoids and the key areas for future development within this field.
Collapse
Affiliation(s)
- Kevin L. Bicker
- Department of Chemistry
- Middle Tennessee State University
- Murfreesboro
- USA
| | - Steven L Cobb
- Deparment of Chemistry
- Biophysical Sciences Institute
- Durham University
- Durham
- UK
| |
Collapse
|
16
|
Spicer SK, Subramani A, Aguila AL, Green RM, McClelland EE, Bicker KL. Toward a clinical antifungal peptoid: Investigations into the therapeutic potential of AEC5. Biopolymers 2019; 110:e23276. [PMID: 30938841 PMCID: PMC6660985 DOI: 10.1002/bip.23276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.
Collapse
Affiliation(s)
- Sabrina K. Spicer
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Aarthi Subramani
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Angelica L. Aguila
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - R. Madison Green
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Erin E. McClelland
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Kevin L. Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| |
Collapse
|
17
|
Jimenez CJ, Tan J, Dowell KM, Gadbois GE, Read CA, Burgess N, Cervantes JE, Chan S, Jandaur A, Karanik T, Lee JJ, Ley MC, McGeehan M, McMonigal A, Palazzo KL, Parker SA, Payman A, Soria M, Verheyden L, Vo VT, Yin J, Calkins AL, Fuller AA, Stokes GY. Peptoids advance multidisciplinary research and undergraduate education in parallel: Sequence effects on conformation and lipid interactions. Biopolymers 2019; 110:e23256. [PMID: 30633339 PMCID: PMC6590334 DOI: 10.1002/bip.23256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
Peptoids are versatile peptidomimetic molecules with wide-ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three-dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid-based projects to advance both research and undergraduate educational objectives in parallel.
Collapse
Affiliation(s)
- Christian J. Jimenez
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jiacheng Tan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Kalli M. Dowell
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Gillian E. Gadbois
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Cameron A. Read
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Nicole Burgess
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jesus E. Cervantes
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Shannon Chan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Anmol Jandaur
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Tara Karanik
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jaenic J. Lee
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Mikaela C. Ley
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Molly McGeehan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Ann McMonigal
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Kira L. Palazzo
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Samantha A. Parker
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Andre Payman
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Maritza Soria
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Lauren Verheyden
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Vivian T. Vo
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jennifer Yin
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Anna L. Calkins
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Amelia A. Fuller
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Grace Y. Stokes
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| |
Collapse
|
18
|
Middleton MP, Armstrong SA, Bicker KL. Improved potency and reduced toxicity of the antifungal peptoid AEC5 through submonomer modification. Bioorg Med Chem Lett 2018; 28:3514-3519. [PMID: 30297282 DOI: 10.1016/j.bmcl.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
As proteolytically stable peptidomimetics, peptoids could serve as antifungal agents to supplement a therapeutic field wrought with toxicity issues. We report the improvement of an antifungal peptoid, AEC5, through an iterative structure-activity relationship study. A sarcosine scan was used to first identify the most pharmacophorically important peptoid building blocks of AEC5, followed by sequential optimization of each building block. The optimized antifungal peptoid from this study, β-5, has improved potency towards Cryptococcus neoformans and decreased toxicity towards mammalian cells. For example, the selectivity ratio for C. neoformans over mammalian fibroblasts was improved from 8 for AEC5 to 37 for β-5.
Collapse
Affiliation(s)
- Madyson P Middleton
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States
| | - Scott A Armstrong
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States
| | - Kevin L Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States.
| |
Collapse
|
19
|
Lee J, Kang D, Choi J, Huang W, Wadman M, Barron AE, Seo J. Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorg Med Chem Lett 2018; 28:170-173. [DOI: 10.1016/j.bmcl.2017.11.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
|
20
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 2017; 38:117-126. [PMID: 28494316 PMCID: PMC5645069 DOI: 10.1016/j.cbpa.2017.03.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
Abstract
Several combinatorial methods have been developed to create focused or diverse chemical libraries with a wide range of linear or macrocyclic chemical molecules: peptides, non-peptide oligomers, peptidomimetics, small-molecules, and natural product-like organic molecules. Each combinatorial approach has its own unique high-throughput screening and encoding strategy. In this article, we provide a brief overview of combinatorial chemistry in drug discovery with emphasis on recently developed new technologies for design, synthesis, screening and decoding of combinatorial library. Examples of successful application of combinatorial chemistry in hit discovery and lead optimization are given. The limitations and strengths of combinatorial chemistry are also briefly discussed. We are now in a better position to truly leverage the power of combinatorial technologies for the discovery and development of next-generation drugs.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Bolt HL, Eggimann GA, Jahoda CAB, Zuckermann RN, Sharples GJ, Cobb SL. Exploring the links between peptoid antibacterial activity and toxicity. MEDCHEMCOMM 2017; 8:886-896. [PMID: 30108804 PMCID: PMC6072100 DOI: 10.1039/c6md00648e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/31/2022]
Abstract
Peptoids are a promising class of antimicrobial agents with reported activities against a range of both Gram-positive and Gram-negative bacteria, fungi and most recently parasites. However, at present the available toxicity data is somewhat limited and as such rationally designing effective antimicrobial peptoids can be challenging. Herein, we present the toxicity profiling of a series of linear peptoids against mammalian cell lines (HaCaT and HepG2). The cytotoxicity of the peptoid library has then been correlated with their antibacterial properties against Gram-positive and Gram-negative bacteria and also to the hydrophobicity of the peptoid sequences. The work presented provides valuable data to aid in the future rational design of antimicrobial peptoids.
Collapse
Affiliation(s)
- H L Bolt
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| | - G A Eggimann
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| | - C A B Jahoda
- School of Biological and Biomedical Sciences , Durham University , Durham DH1 3LE , UK .
| | - R N Zuckermann
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California , USA
| | - G J Sharples
- School of Biological and Biomedical Sciences , Durham University , Durham DH1 3LE , UK .
| | - S L Cobb
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
23
|
Turkett JA, Bicker KL. Evaluating the Effect of Peptoid Lipophilicity on Antimicrobial Potency, Cytotoxicity, and Combinatorial Library Design. ACS COMBINATORIAL SCIENCE 2017; 19:229-233. [PMID: 28291947 DOI: 10.1021/acscombsci.7b00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Growing prevalence of antibiotic resistant bacterial infections necessitates novel antimicrobials, which could be rapidly identified from combinatorial libraries. We report the use of the peptoid library agar diffusion (PLAD) assay to screen peptoid libraries against the ESKAPE pathogens, including the optimization of assay conditions for each pathogen. Work presented here focuses on the tailoring of combinatorial peptoid library design through a detailed study of how peptoid lipophilicity relates to antibacterial potency and mammalian cell toxicity. The information gleaned from this optimization was then applied using the aforementioned screening method to examine the relative potency of peptoid libraries against Staphylococcus aureus, Acinetobacter baumannii, and Enterococcus faecalis prior to and following functionalization with long alkyl tails. The data indicate that overall peptoid hydrophobicity and not simply alkyl tail length is strongly correlated with mammalian cell toxicity. Furthermore, this work demonstrates the utility of the PLAD assay in rapidly evaluating the effect of molecular property changes in similar libraries.
Collapse
Affiliation(s)
- Jeremy A. Turkett
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| | - Kevin L. Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|