1
|
Graham JJ, Subramani SV, Yang X, Russell TM, Zhang F, Keten S. Charting the envelope of mechanical properties of synthetic silk fibers through predictive modeling of the drawing process. SCIENCE ADVANCES 2025; 11:eadr3833. [PMID: 40053589 PMCID: PMC11887809 DOI: 10.1126/sciadv.adr3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
A major challenge in synthesizing strong and tough protein fibers based on spider silk motifs is understanding the coupling between protein sequence and the postspin drawing process. We clarify how drawing-induced elongational force affects ordering, chain extension, interchain contacts, and molecular mobility through mesoscale simulations of silk-based fibers. We show that these emergent features can be used to predict mechanical property enhancements arising from postspin drawing. Simulations recapitulate a purely process-dependent mechanical property envelope in which order enhances fiber strength while preserving toughness. The relationship between chain extension and crystalline domain alignment observed in simulations is validated by Raman spectroscopy of wet-spun fibers. Property enhancements attributed to the progression of anisotropic extension are verified by mechanical tests of drawn silk fibers and justified by theory. These findings elucidate how drawing enhances properties of protein-based fibers and shed light on how to incorporate this effect into predictive models.
Collapse
Affiliation(s)
- Jacob J. Graham
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shri V. Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinyan Yang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Timothy M. Russell
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Wang Y, Bin D. The effect of silk short fiber biomimetic materials on the recovery of sports function in patients with meniscal injury during sports. Biomed Mater Eng 2025; 36:69-82. [PMID: 39973214 DOI: 10.1177/09592989241296427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundIn sports, especially high-intensity and high-risk activities, the meniscus is easily damaged. For patients with meniscus injuries, it is necessary to repair or replace the patient's meniscus. However, as age increases, the human meniscus tissue gradually forms and cannot be repaired through its own meniscus. Therefore, it is necessary to maintain the patient's movement function through meniscus support materials.ObjectiveTraditional meniscus support materials have poor mechanical properties and poor biocompatibility. In response to this issue, this study designed a meniscus scaffold made of silk short fibers, silk fibroin, and wool protein.MethodsThrough electrospinning and freeze-drying techniques, the material was processed to obtain a silk short fiber meniscus with a biomimetic structure.ResultsThrough experiments, the surface morphology, hydrophobicity, porosity, secondary structure, thermal stability, water absorption swelling, and MP of MCS made of SSF biomimetic materials were characterized.ConclusionThe experimental results show that the manufactured silk short fiber meniscus has good compressive performance, thermal stability, and water absorption and swelling properties, and it also exhibits good biocompatibility.
Collapse
Affiliation(s)
- Yong Wang
- School of Physical Education and Health Science, Guangxi Minzu University, Nanning, China
| | - Dongsong Bin
- Physical Education Department, Guangxi University of Foreign Languages, Nanning, China
| |
Collapse
|
3
|
Ma X, Li S, Gao B. Artificial Spidroin Nanogenerator-Based Articulus Wound Dressing. ChemistryOpen 2025; 14:e202400257. [PMID: 39473315 PMCID: PMC11808259 DOI: 10.1002/open.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Articulus wound infection is a threat to human health. Existing medical materials have poor biocompatibility and may contain harmful chemicals, causing allergies and secondary infections. Therefore, there is an urgent need to develop innovative medical materials. Materials made of artificial spider silk proteins have been widely used in wound healing because of their good biocompatibility, biodegradability, cell adhesion and bioelectronic properties.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of OrthopedicsTaizhou People's HospitalTaizhou, Jiangsu ProvincePeople's Republic of China
| | - Shuhuan Li
- School of Pharmaceutical SciencesCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211816China
| | - Bingbing Gao
- School of Pharmaceutical SciencesCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211816China
| |
Collapse
|
4
|
Miao X, Han R, Tian J, Ma Y, Müller AJ, Li Z. Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters Via a "Reserve-Release" Crystallization Strategy. Angew Chem Int Ed Engl 2025; 64:e202417627. [PMID: 39385345 DOI: 10.1002/anie.202417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity ("reserve") albeit with vast potential for strain-induced crystallization ("release"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the "reserve-release" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.
Collapse
Affiliation(s)
- Xiangyu Miao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Juan Tian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanchi Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/ EHU, Paseo Manuel de Lardizábal, 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Nakamura H, Ito Y, Sato R, Chi H, Sato C, Watanabe Y, Arakawa K. Correlating Mechanical Properties and Sequence Motifs in Artificial Spider Silk by Targeted Motif Substitution. ACS Biomater Sci Eng 2024; 10:7394-7403. [PMID: 39501419 DOI: 10.1021/acsbiomaterials.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The major ampullate silk of orb-weaving spiders is renowned for its exceptional mechanical properties, including high tensile strength and extensibility. The development of artificial spider silk presents a promising alternative to traditional fibers with significant environmental impacts. This study aims to elucidate the relationship between sequence motifs of natural spider silk and the mechanical properties of artificial spider silk. Using the Spider Silkome Database, we identified motifs correlated with specific physical properties and substituted them into MaSp2-based mini-spidroin BP1. We then measured the mechanical properties of the resulting recombinant artificial spider silk through tensile tests, observed structural properties via birefringence measurement and wide-angle X-ray scattering, and evaluated the water response through boiled water shrinkage tests. Introducing a positively correlated motif increased the tensile strength by 9.3%, while a negatively correlated motif decreased it by 5.1%, confirming the sequence-property relationship. These findings demonstrate that targeted motif substitution can effectively control the physical properties of artificial spider silk, facilitating the development of sustainable biomaterials with tailored mechanical properties for diverse industrial applications.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yusuke Ito
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ryota Sato
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Hongfang Chi
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Chikako Sato
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yasuha Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| |
Collapse
|
6
|
Wang Q, Guo Z. Durability improvement strategies for wettable fog harvesting devices inspired by spider silk fibers: a review. NANOSCALE 2024; 16:20405-20433. [PMID: 39434597 DOI: 10.1039/d4nr02697g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Water scarcity is a persistent challenge, and in this case, the freshwater content in the air and water collection phenomena observed in nature provide ideas for fog harvesting. The fog-harvesting capabilities of natural spider silk have long attracted attention. Thus, researchers have undertaken significant efforts for the preparation of wettable biomimetic knotted fibers. However, the fragility of their chemical coating and the susceptibility of spun fibers to damage often present substantial challenges in the durability of fog harvesting equipment. Herein, from a bioengineering perspective, we review the improvement strategies for enhancing the mechanical properties of wettable biomimetic spider silk fibers based on the dense nanoconfined hydrogen-bond array crystalline regions and uniformly embedded amorphous regions of natural wettable spider silk fibers. These strategies aim to achieve high tensile strength, good fracture toughness, and corrosion resistance. Additionally, by incorporating UV inhibitors during spinning, the effects of sunlight can be mitigated or shielded, thereby greatly enhancing the mechanical durability of fog-harvesting devices under harsh realistic conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Brough HA, Cheneler D, Hardy JG. Progress in Multiscale Modeling of Silk Materials. Biomacromolecules 2024; 25:6987-7014. [PMID: 39438248 PMCID: PMC11558682 DOI: 10.1021/acs.biomac.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
As a result of their hierarchical structure and biological processing, silk fibers rank among nature's most remarkable materials. The biocompatibility of silk-based materials and the exceptional mechanical properties of certain fibers has inspired the use of silk in numerous technical and medical applications. In recent years, computational modeling has clarified the relationship between the molecular architecture and emergent properties of silk fibers and has demonstrated predictive power in studies on novel biomaterials. Here, we review advances in modeling the structure and properties of natural and synthetic silk-based materials, from early structural studies of silkworm cocoon fibers to cutting-edge atomistic simulations of spider silk nanofibrils and the recent use of machine learning models. We explore applications of modeling across length scales: from quantum mechanical studies on model peptides, to atomistic and coarse-grained molecular dynamics simulations of silk proteins, to finite element analysis of spider webs. As computational power and algorithmic efficiency continue to advance, we expect multiscale modeling to become an indispensable tool for understanding nature's most impressive fibers and developing bioinspired functional materials.
Collapse
Affiliation(s)
- Harry
D. A. Brough
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David Cheneler
- School
of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Materials
Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - John G. Hardy
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Materials
Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
8
|
Lin B, Gao B, Wei M, Li S, Zhou Q, He B. Overexpressed Artificial Spidroin Based Microneedle Spinneret for 3D Air Spinning of Hybrid Spider Silk. ACS NANO 2024; 18:25778-25794. [PMID: 39222009 DOI: 10.1021/acsnano.4c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Efforts have been devoted to developing strategies for converting spider silk proteins (spidroins) into functional silk materials. However, studies mimicking the exact natural spinning process of spiders encounter arduous challenges. In this paper, consistent with the natural spinning process of spiders, we report a high-efficient spinning strategy that enables the mass preparation of multifunctional artificial spider silk at different scales. By simulating the structural stability mechanism of the cross-β-spine of the amyloid polypeptide by computer dynamics, we designed and obtained an artificial amyloid spidroin with a significantly increased yield (13.5 g/L). Using the obtained artificial amyloid spidroin, we fabricated artificial spiders with artificial spinning glands (hollow MNs). Notably, by combining artificial spiders with 3D printing, we perform patterned air spinning at the macro- and microscales, and the resulting patterned artificial spider silk has excellent pump-free liquid flow and conductive and frictional electrical properties. Based on these findings, we used macroscale artificial spider silk to treat rheumatoid arthritis in mice and micro artificial spider silk to prepare wound dressings for diabetic mice. We believe that artificial spider silk based on an exact spinning strategy will provide a high-efficient way to construct and modulate the next generation of smart materials.
Collapse
Affiliation(s)
- Baoyang Lin
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wei
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuhuan Li
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
10
|
Qin D, Wang M, Cheng W, Chen J, Wang F, Sun J, Ma C, Zhang Y, Zhang H, Li H, Liu K, Li J. Spidroin-mimetic Engineered Protein Fibers with High Toughness and Minimized Batch-to-batch Variations through β-sheets Co-assembly. Angew Chem Int Ed Engl 2024; 63:e202400595. [PMID: 38321642 DOI: 10.1002/anie.202400595] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Synthetic spidroin fibers have not yet attained the same level of toughness and stability as natural spider silks due to the complexity of composition and hierarchical structure. Particularly, understanding the intricate interactions between spidroin components in spider fiber is still elusive. Herein, we report modular design and preparation of spidroin-mimetic fibers composed of a conservative C-terminus spidroin module, two different natural β-sheets modules, and a non-spidroin random-coil module. The resulting fibers exhibit a toughness of ~200 MJ/m3, reaching the highest value among the reported artificial spider silks. The interactions between two components of recombinant spidroins facilitate the intermolecular co-assembly of β-sheets, thereby enhancing the mechanical strength and reducing batch-to-batch variability in the dual-component spidroin fibers. Additionally, the dual-component spidroin fibers offer potential applications in implantable or even edible devices. Therefore, our work presents a generic strategy to develop high-performance protein fibers for diverse translations in different scenarios.
Collapse
Affiliation(s)
- Dawen Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 200241, Shanghai, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
11
|
Barbinta-Patrascu ME, Nichita C, Bita B, Antohe S. Biocomposite Materials Derived from Andropogon halepensis: Eco-Design and Biophysical Evaluation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1225. [PMID: 38473696 DOI: 10.3390/ma17051225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
This research work presents a "green" strategy of weed valorization for developing silver nanoparticles (AgNPs) with promising interesting applications. Two types of AgNPs were phyto-synthesized using an aqueous leaf extract of the weed Andropogon halepensis L. Phyto-manufacturing of AgNPs was achieved by two bio-reactions, in which the volume ratio of (phyto-extract)/(silver salt solution) was varied. The size and physical stability of Andropogon-AgNPs were evaluated by means of DLS and zeta potential measurements, respectively. The phyto-developed nanoparticles presented good free radicals-scavenging properties (investigated via a chemiluminescence technique) and also urease inhibitory activity (evaluated using the conductometric method). Andropogon-AgNPs could be promising candidates for various bio-applications, such as acting as an antioxidant coating for the development of multifunctional materials. Thus, the Andropogon-derived samples were used to treat spider silk from the spider Pholcus phalangioides, and then, the obtained "green" materials were characterized by spectral (UV-Vis absorption, FTIR ATR, and EDX) and morphological (SEM) analyses. These results could be exploited to design novel bioactive materials with applications in the biomedical field.
Collapse
Affiliation(s)
- Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Cornelia Nichita
- CTT-3Nano-SAE Research Center, Faculty of Physics, ICUB, University of Bucharest, MG-38, 405 Atomistilor Street, 077125 Magurele, Romania
- National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Avenue, 031299 Bucharest, Romania
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
- National Institute for Lasers, Plasma and Radiation Physics, Magurele, 077125 Bucharest, Romania
| | - Stefan Antohe
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050045 Bucharest, Romania
| |
Collapse
|
12
|
Kalia VC, Patel SKS, Karthikeyan KK, Jeya M, Kim IW, Lee JK. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers (Basel) 2024; 16:410. [PMID: 38337299 DOI: 10.3390/polym16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
Collapse
Affiliation(s)
- Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kugalur K Karthikeyan
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Marimuthu Jeya
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Stengel D, Saric M, Johnson HR, Schiller T, Diehl J, Chalek K, Onofrei D, Scheibel T, Holland GP. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers. Biomacromolecules 2023; 24:1463-1474. [PMID: 36791420 DOI: 10.1021/acs.biomac.2c01467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Producing recombinant spider silk fibers that exhibit mechanical properties approaching native spider silk is highly dependent on the constitution of the spinning dope. Previously published work has shown that recombinant spider silk fibers spun from dopes with phosphate-induced pre-assembly (biomimetic dopes) display a toughness approaching native spider silks far exceeding the mechanical properties of fibers spun from dopes without pre-assembly (classical dopes). Dynamic light scattering experiments comparing the two dopes reveal that biomimetic dope displays a systematic increase in assembly size over time, while light microscopy indicates liquid-liquid-phase separation (LLPS) as evidenced by the formation of micron-scale liquid droplets. Solution nuclear magnetic resonance (NMR) shows that the structural state in classical and biomimetic dopes displays a general random coil conformation in both cases; however, some subtle but distinct differences are observed, including a more ordered state for the biomimetic dope and small chemical shift perturbations indicating differences in hydrogen bonding of the protein in the different dopes with notable changes occurring for Tyr residues. Solid-state NMR demonstrates that the final wet-spun fibers from the two dopes display no structural differences of the poly(Ala) stretches, but biomimetic fibers display a significant difference in Tyr ring packing in non-β-sheet, disordered helical domains that can be traced back to differences in dope preparations. It is concluded that phosphate pre-orders the recombinant silk protein in biomimetic dopes resulting in LLPS and fibers that exhibit vastly improved toughness that could be due to aromatic ring packing differences in non-β-sheet domains that contain Tyr.
Collapse
Affiliation(s)
- Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Merisa Saric
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Hannah R Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Tim Schiller
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Johannes Diehl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Kevin Chalek
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| |
Collapse
|
14
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
15
|
Costa A, Encarnação T, Tavares R, Todo Bom T, Mateus A. Bioplastics: Innovation for Green Transition. Polymers (Basel) 2023; 15:517. [PMID: 36771817 PMCID: PMC9920607 DOI: 10.3390/polym15030517] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023] Open
Abstract
Bioplastics are one of the possible alternative solutions to the polymers of petrochemical origins. Bioplastics have several advantages over traditional plastics in terms of low carbon footprint, energy efficiency, biodegradability and versatility. Although they have numerous benefits and are revolutionizing many application fields, they also have several weaknesses, such as brittleness, high-water absorption, low crystallization ability and low thermal degradation temperature. These drawbacks can be a limiting factor that prevents their use in many applications. Nonetheless, reinforcements and plasticizers can be added to bioplastic production as a way to overcome such limitations. Bioplastics materials are not yet studied in depth, but it is with great optimism that their industrial use and market scenarios are increasing; such growth can be a positive driver for more research in this field. National and international investments in the bioplastics industry can also promote the green transition. International projects, such as EcoPlast and Animpol, aim to study and develop new polymeric materials made from alternative sources. One of their biggest problems is their waste management; there is no separation process yet to recycle the nonbiodegradable bioplastics, and they are considered contaminants when mixed with other polymers. Some materials use additives, and their impact on the microplastics they leave after breaking apart is subject to debate. For this reason, it is important to consider their life cycle analysis and assess their environmental viability. These are materials that can possibly be processed in various ways, including conventional processes used for petrochemical ones. Those include injection moulding and extrusion, as well as digital manufacturing. This and the possibility to use these materials in several applications is one of their greatest strengths. All these aspects will be discussed in this review.
Collapse
Affiliation(s)
- Ana Costa
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Telma Encarnação
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- PTScience, Avenida do Atlântico, N° 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal
| | - Rafael Tavares
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Tiago Todo Bom
- Complexo Industrial VANGEST—Edifício 2, Rua de Leiria 210, 2430-527 Marinha Grande, Portugal
| | - Artur Mateus
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| |
Collapse
|
16
|
Rapid molecular diversification and homogenization of clustered major ampullate silk genes in Argiope garden spiders. PLoS Genet 2022; 18:e1010537. [PMID: 36508456 PMCID: PMC9779670 DOI: 10.1371/journal.pgen.1010537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.
Collapse
|
17
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
18
|
Arakawa K, Kono N, Malay AD, Tateishi A, Ifuku N, Masunaga H, Sato R, Tsuchiya K, Ohtoshi R, Pedrazzoli D, Shinohara A, Ito Y, Nakamura H, Tanikawa A, Suzuki Y, Ichikawa T, Fujita S, Fujiwara M, Tomita M, Blamires SJ, Chuah JA, Craig H, Foong CP, Greco G, Guan J, Holland C, Kaplan DL, Sudesh K, Mandal BB, Norma-Rashid Y, Oktaviani NA, Preda RC, Pugno NM, Rajkhowa R, Wang X, Yazawa K, Zheng Z, Numata K. 1000 spider silkomes: Linking sequences to silk physical properties. SCIENCE ADVANCES 2022; 8:eabo6043. [PMID: 36223455 PMCID: PMC9555773 DOI: 10.1126/sciadv.abo6043] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Ayaka Tateishi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Ryota Sato
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Rintaro Ohtoshi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | | | | | - Yusuke Ito
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Nakamura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Akio Tanikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuya Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Takeaki Ichikawa
- Kokugakuin Kugayama High School, Suginami, Tokyo 168-0082, Japan
| | - Shohei Fujita
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| | - Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Sean J. Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jo-Ann Chuah
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hamish Craig
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Choon P. Foong
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Gabriele Greco
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Juan Guan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Chris Holland
- Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781 039 Assam, India
- Center for Nanotechnology, IITG, Guwahati, 781 039 Assam, India
- School of Health Sciences and Technology, IITG, Guwahati, 781 039 Assam, India
| | - Y. Norma-Rashid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur A. Oktaviani
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rucsanda C. Preda
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicola M. Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Xiaoqin Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Kenjiro Yazawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zhaozhu Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
19
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Guo K, Zhang X, Zhao D, Qin L, Jiang W, Hu W, Liu X, Xia Q, Dong Z, Zhao P. Identification and characterization of sericin5 reveals non-cocoon silk sericin components with high β-sheet content and adhesive strength. Acta Biomater 2022; 150:96-110. [PMID: 35902035 DOI: 10.1016/j.actbio.2022.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/01/2022]
Abstract
Sericins are glue proteins on the surface of silk fibers. Four sericins have been characterized in silkworm, namely sericin1 (Ser1), sericin2 (Ser2), sericin3 (Ser3), and sericin4 (Ser4). In this study, we report a novel sericin, sericin5 (Ser5), which exists only in non-cocoon silk. We describe the sequence, exon-intron structure, and translation products of Ser5 in Bombyx mori. The Ser5 gene is approximately 22-kb long and comprises 16 exons. Ser5 protein has a size of 260 kDa, as determined by SDS-PAGE, western blot, and LC-MS/MS. Immunofluorescence analysis revealed that Ser5 co-localizes with Ser1 in the sericin layer. The expression pattern of Ser5 was detected at the transcriptional and translational levels. We systematically analyzed and compared the amino acid composition, repeat regions, and hydrophilicity of silkworm sericins. Morphological observations showed that non-cocoon silk had more sericin than cocoon silk. Circular dichroism spectra revealed that non-cocoon silk sericin contained more β-sheet structures than cocoon silk sericin. In addition, we found that the hydrophilicity and adhesive strength of native sericin increases gradually from the inner layer to the outer layer. This research enhances our understanding of various sericins from cocoon silk and non-cocoon silk with regard to their expression patterns, hydrophilicity, secondary structure and adhesive performances. STATEMENT OF SIGNIFICANCE: : Sericin is a natural biomaterial with diverse biological properties, which has long been used as tissue engineering and biomedical applications. However, the composition and distribution of sericins in different kinds of silk are still uncertain, and the properties difference between sericins have not yet been reported. Our study makes a significant contribution to the literature as it identifies the sequence, composition, hydrophilicity and adhesive property of sericins. Moreover, it provides key insights into the structure-function and function-distribution relationships associated with sericins. We believe that this study will arouse the interest to the readership of your journal as it identifies the new complete sequence of sericin and revealed the composition and properties of sericin, thus highlighting their future potentials applications in both the biomaterial and technical fields.
Collapse
Affiliation(s)
- Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Wenchao Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| |
Collapse
|
21
|
Chen S, Yang M, Zhang J, Cheng H, Qin H, Yao S, Wang M, Zhang X, Yang Z. Synergistic enhancement on flexible solid-state supercapacitor based on redox-active Fe 3+ions/natural spidroin modified vertically aligned carbon nanotube arrays. NANOTECHNOLOGY 2022; 33:395401. [PMID: 35700715 DOI: 10.1088/1361-6528/ac7886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The conductive skeleton and aligned carbon nanotube array (CNTA) structure can greatly shorten the ion transfer path and promote the charge transfer speed, which makes the CNTA an ideal electrode material for energy storage application. However, poor mechanical stability and low specific capacitance greatly impede its practical utilization. Here, we introduce a promising flexible electrode material based on the natural spider silk protein (SSP) modified CNTA(SSP/CNTA) with improved hydrophilicity and mechanical flexibility. The redox-active Fe3+doped SSP/CNTA flexible solid-state supercapacitor (FSSC) device with superior energy storage performance was assembled in a symmetric 'sandwich-type' structure. The synergetic interaction between Fe3+ions and the SSP are proved to greatly enhance the electrochemical performance especially the long-term cyclic stability. The Fe3+doped SSP/CNTA FSSCs device achieves an ultra-high volumetric capacitance of 4.92 F cm-3at a sweep speed of 1 mV s-1. Meanwhile it exhibited an excellent cycling stability with an increased capacitance by 10% after 10 000 charge-discharge cycles. As a control, a Fe3+doped CNTA composite device without SSP will lose over 74% of the capacitance after 10 000 cycles. The energy storage mechanism analysis confirms the dominated capacitive behavior of the device, which explained a considerable power density and rate performance. Our method thus provides a promising strategy to build up highly-efficient redox-enhanced FSSCs for next generation of wearable and implantable electronics.
Collapse
Affiliation(s)
- Shuanglu Chen
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Mingyue Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Jiapeng Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Hao Cheng
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Hai Qin
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Sicheng Yao
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Manyu Wang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhaohui Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, People's Republic of China
| |
Collapse
|
22
|
Asakura T, Matsuda H, Naito A, Abe Y. Formylation of Recombinant Spider Silk in Formic Acid and Wet Spinning Studied Using Nuclear Magnetic Resonance and Infrared Spectroscopies. ACS Biomater Sci Eng 2022; 8:2390-2402. [PMID: 35532754 DOI: 10.1021/acsbiomaterials.2c00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported wet spinning of recombinant spider silk protein (RSSP) and formylation of RSSP in formic acid (FA). First, FA was selected as the spinning solvent and the detailed spinning condition was determined. Next, the mechanical property was compared between the RSSP fiber spun after allowing the spinning solution dissolved in FA to stand for 2 days and the fiber spun immediately after being dissolved in FA for 4 h. The tensile strength of the former fiber was lower than the strength of the latter fiber. This difference can be explained by the difference in the degree of formylation as follows. FA is a known formylating agent, although most researchers who prepared silk fiber by wet spinning with FA have not pointed out about formylation. The formylation of the Ser OH group was confirmed by 13C solution nuclear magnetic resonance (NMR), and the time course of formylation of the RSSP film prepared from the FA solution was tracked by Fourier transform infrared spectroscopy. The 13C solid-state NMR spectra were also compared between two kinds of the formylated RSSP fibers and indicated that the packing state was tighter for the latter fiber than the former one, which could explain higher tensile strength of the latter fiber in the dry state. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the RSSP sample decomposed gradually with storage time in FA and the decomposition has begun partly even at 2 h after dissolution in FA. The decomposition by formylation seems to have no significant effect on the backbone structure of the RSSP fiber, although the packing of the fiber becomes loose as a whole. Finally, preliminary trial of deformylation of the formylated RSSP fiber was performed.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yunoske Abe
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| |
Collapse
|
23
|
Arndt T, Greco G, Schmuck B, Bunz J, Shilkova O, Francis J, Pugno NM, Jaudzems K, Barth A, Johansson J, Rising A. Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200986. [PMID: 36505976 PMCID: PMC9720699 DOI: 10.1002/adfm.202200986] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Indexed: 06/17/2023]
Abstract
Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in β-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high β-strand propensity and can mediate tight inter-β-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger β-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & MechanicsDepartment of Civil, Environmental and Mechanical EngineeringUniversity of TrentoVia Mesiano 77Trento38123Italy
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jessica Bunz
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Present address:
Spiber Technologies ABAlbaNova University CenterSE‐10691StockholmSweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & MechanicsDepartment of Civil, Environmental and Mechanical EngineeringUniversity of TrentoVia Mesiano 77Trento38123Italy
- School of Engineering and Materials SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Kristaps Jaudzems
- Department of Physical Organic ChemistryLatvian Institute of Organic SynthesisRigaLV‐1006Latvia
| | - Andreas Barth
- Department of Biochemistry and BiophysicsThe Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholm10691Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
24
|
Schellhaus AK, Xu S, Gierisch ME, Vornberger J, Johansson J, Dantuma NP. A spider silk-derived solubility domain inhibits nuclear and cytosolic protein aggregation in human cells. Commun Biol 2022; 5:505. [PMID: 35618760 PMCID: PMC9135726 DOI: 10.1038/s42003-022-03442-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/03/2022] [Indexed: 11/12/2022] Open
Abstract
Due to the inherent toxicity of protein aggregates, the propensity of natural, functional amyloidogenic proteins to aggregate must be tightly controlled to avoid negative consequences on cellular viability. The importance of controlled aggregation in biological processes is illustrated by spidroins, which are functional amyloidogenic proteins that form the basis for spider silk. Premature aggregation of spidroins is prevented by the N-terminal NT domain. Here we explored the potential of the engineered, spidroin-based NT* domain in preventing protein aggregation in the intracellular environment of human cells. We show that the NT* domain increases the soluble pool of a reporter protein carrying a ligand-regulatable aggregation domain. Interestingly, the NT* domain prevents the formation of aggregates independent of its position in the aggregation-prone protein. The ability of the NT* domain to inhibit ligand-regulated aggregation was evident both in the cytosolic and nuclear compartments, which are both highly relevant for human disorders linked to non-physiological protein aggregation. We conclude that the spidroin-derived NT* domain has a generic anti-aggregation activity, independent of position or subcellular location, that is also active in human cells and propose that the NT* domain can potentially be exploited in controlling protein aggregation of disease-associated proteins. Spider-silk protein increases the solubility of an aggregation-prone reporter protein, showing potential applications in controlling aggregation of disease-associated proteins by natural solubility domains.
Collapse
Affiliation(s)
- Anna Katharina Schellhaus
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Shanshan Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Julia Vornberger
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, S-14183, Huddinge, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden.
| |
Collapse
|
25
|
Artificial and natural silk materials have high mechanical property variability regardless of sample size. Sci Rep 2022; 12:3507. [PMID: 35241705 PMCID: PMC8894418 DOI: 10.1038/s41598-022-07212-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Silk fibres attract great interest in materials science for their biological and mechanical properties. Hitherto, the mechanical properties of the silk fibres have been explored mainly by tensile tests, which provide information on their strength, Young’s modulus, strain at break and toughness modulus. Several hypotheses have been based on these data, but the intrinsic and often overlooked variability of natural and artificial silk fibres makes it challenging to identify trends and correlations. In this work, we determined the mechanical properties of Bombyx mori cocoon and degummed silk, native spider silk, and artificial spider silk, and compared them with classical commercial carbon fibres using large sample sizes (from 10 to 100 fibres, in total 200 specimens per fibre type). The results confirm a substantial variability of the mechanical properties of silk fibres compared to commercial carbon fibres, as the relative standard deviation for strength and strain at break is 10–50%. Moreover, the variability does not decrease significantly when the number of tested fibres is increased, which was surprising considering the low variability frequently reported for silk fibres in the literature. Based on this, we prove that tensile testing of 10 fibres per type is representative of a silk fibre population. Finally, we show that the ideal shape of the stress–strain curve for spider silk, characterized by a pronounced exponential stiffening regime, occurs in only 25% of all tested spider silk fibres.
Collapse
|
26
|
Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon J, Kim B, Lee W, Koh W, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105420. [PMID: 35001517 PMCID: PMC8922117 DOI: 10.1002/advs.202105420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Deokjae Heo
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR ProjectYonsei University College of DentistrySeoul03722Republic of Korea
| | - Byeong‐Su Kim
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Wonhwa Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangmin Lee
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
27
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
28
|
Kono N, Ohtoshi R, Malay AD, Mori M, Masunaga H, Yoshida Y, Nakamura H, Numata K, Arakawa K. Darwin's bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression. Open Biol 2021; 11:210242. [PMID: 34932907 PMCID: PMC8692038 DOI: 10.1098/rsob.210242] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider (Caerostris darwini) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ m-1 and over 50% extensibility, and can build river-bridging webs with a size of 2.8 m2. Recent studies have suggested that specific spidroins expressed in C. darwini are responsible for the mechanical properties of its silk. Therefore, a more comprehensive investigation of spidroin sequences, silk thread protein contents and phylogenetic conservation among closely related species is required. Here, we conducted genomic, transcriptomic and proteomic analyses of C. darwini and its close relative Caerostris extrusa. A variety of spidroins and low-molecular-weight proteins were found in the dragline silk of these species; all of the genes encoding these proteins were conserved in both genomes, but their genes were more expressed in C. darwini. The potential to produce very tough silk is common in the genus Caerostris, and our results may suggest the existence of plasticity allowing silk mechanical properties to be changed by optimizing related gene expression in response to the environment.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Rintaro Ohtoshi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ali D. Malay
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
29
|
Liu T, Huang H, Wang Y, Yu J, Hu Z. Super Strong and Tough Polybenzimidazole/Metal Ions Coordination Networks: Reinforcing Mechanism, Recyclability, and Anti-Counterfeiting Applications. Macromol Rapid Commun 2021; 43:e2100643. [PMID: 34755405 DOI: 10.1002/marc.202100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Indexed: 11/06/2022]
Abstract
Nature has provided many delicate strategies for optimizing the structural characteristics of biological materials. One such strategy is the strengthening and toughening of matrix materials by aduandant and hierarchically arranged non-covalent crosslinking. However, efficient strengthening and toughening of high-performance aromatic polymers by non-covalent bonds has rarely been reported yet. Herein, we report the preparation and characterizations of a metal coordination bonds crosslinked polybenzimidazole (PBI) network. By optimizing the synthetic parameters, the strength of copper ion (Cu2+ ) crosslinked PBI is improved from 87.8 to 218.4 MPa, and the toughness is increased from 19.4 to 111.9 MJ m-3 , corresponding to increments of 148.7 % and 476.8 %, respectively, which surpass all previously reported non-covalent bonds crosslinked high-performance polymers. PBI with varied chain flexibility are then synthesized to deeply understand the stregnening and toughening mechanism. In addition, the glass transition temperature of PBI is dramatically increased by 75 °C after Cu2+ crosslinking. Moreover, the chemical recycling of PBI from crosslinekd network, and the development of a novel high-temperature resistant or high-temperature rewritable anti-counterfeiting films based on Cu2+ crosslinked PBI are also demonstrated. This study is expected to shed light on design principle for future supramolecularly crosslinked and recyclable high-performance polymers.
Collapse
Affiliation(s)
- Tianmeng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
30
|
Su J, Li J, Liang J, Zhang K, Li J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life (Basel) 2021; 11:life11101016. [PMID: 34685387 PMCID: PMC8540918 DOI: 10.3390/life11101016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Wounds have become one of the causes of death worldwide. The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds that bring great pain to patients, and there is currently no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and ability to provide a moist environment for wound repair, which overcomes the shortcomings of traditional dressings. This article first briefly introduces the skin wound healing process, then the preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings made of natural biomaterials and synthetic materials are introduced. Finally, the development prospects and challenges of hydrogel wound dressings are discussed.
Collapse
Affiliation(s)
- Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| |
Collapse
|
31
|
Li J, Zhu Y, Yu H, Dai B, Jun YS, Zhang F. Microbially Synthesized Polymeric Amyloid Fiber Promotes β-Nanocrystal Formation and Displays Gigapascal Tensile Strength. ACS NANO 2021; 15:11843-11853. [PMID: 34251182 DOI: 10.1021/acsnano.1c02944] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability of amyloid proteins to form stable β-sheet nanofibrils has made them potential candidates for material innovation in nanotechnology. However, such a nanoscale feature has rarely translated into attractive macroscopic properties for mechanically demanding applications. Here, we present a strategy by fusing amyloid peptides with flexible linkers from spidroin; the resulting polymeric amyloid proteins can be biosynthesized using engineered microbes and wet-spun into macroscopic fibers. Using this strategy, fibers from three different amyloid groups were fabricated. Structural analyses unveil the presence of β-nanocrystals that resemble the cross-β structure of amyloid nanofibrils. These polymeric amyloid fibers have displayed strong and molecular-weight-dependent mechanical properties. Fibers made of a protein polymer containing 128 repeats of the FGAILSS sequence displayed an average ultimate tensile strength of 0.98 ± 0.08 GPa and an average toughness of 161 ± 26 MJ/m3, surpassing most recombinant protein fibers and even some natural spider silk fibers. The design strategy and the biosynthetic approach can be expanded to create numerous functional materials, and the macroscopic amyloid fibers will enable a wide range of mechanically demanding applications.
Collapse
|
32
|
Verma P, Panda B, Singh KP, Pandit SB. Optimal Protein Sequence Design Mitigates Mechanical Failure in Silk β-Sheet Nanocrystals. ACS Biomater Sci Eng 2021; 7:3156-3165. [PMID: 34151552 DOI: 10.1021/acsbiomaterials.1c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excellent mechanical strength and toughness of spider silk are well characterized experimentally and understood atomistically using computational simulations. However, little attention has been focused on understanding whether the amino acid sequence of β-sheet nanocrystals, which is the key to rendering strength to silk fiber, is optimally chosen to mitigate molecular-scale failure mechanisms. To investigate this, we modeled β-sheet nanocrystals of various representative small/polar/hydrophobic amino acid repeats for determining the sequence motif having superior nanomechanical tensile strength and toughness. The constant velocity pulling of the central β-strand in the nanocrystal, using steered molecular dynamics, showed that homopolymers of small amino acid (alanine/alanine-glycine) sequence motifs, occurring in natural silk fibroin, have better nanomechanical properties than other modeled structures. Further, we analyzed the hydrogen bond (HB) and β-strand pull dynamics of modeled nanocrystals to understand the variation in their rupture mechanisms and explore sequence-dependent mitigating factors contributing to their superior mechanical properties. Surprisingly, the enhanced side-chain interactions in homopoly-polar/hydrophobic amino acid models are unable to augment backbone HB cooperativity to increase mechanical strength. Our analyses suggest that nanocrystals of pristine silk sequences most likely achieve superior mechanical strength by optimizing side-chain interaction, packing, and main-chain HB interactions. Thus, this study suggests that the nanocrystal β-sheet sequence plays a crucial role in determining the nanomechanical properties of silk, and the evolutionary process has optimized it in natural silk. This study provides insight into the molecular design principle of silk with implications in the genetically modified artificial synthesis of silk-like biomaterials.
Collapse
Affiliation(s)
- Paras Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli PO, SAS Nagar 140306, India
| | - Biswajit Panda
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli PO, SAS Nagar 140306, India
| | - Kamal P Singh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli PO, SAS Nagar 140306, India
| | - Shashi B Pandit
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli PO, SAS Nagar 140306, India
| |
Collapse
|