1
|
Zhu Z, Persson AEO, Wernersson LE. Multifunctional Reconfigurable Operations in an Ultra-Scaled Ferroelectric Negative Transconductance Transistor. ACS NANO 2024; 18:28977-28985. [PMID: 39392594 PMCID: PMC11503915 DOI: 10.1021/acsnano.4c09598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The integration of functional materials into electronic devices has become a key approach to extending Moore's law by increasing the functional density of electronic circuits. Here, we present a device technology based on ultrascaled ferroelectric, antiambipolar transistors (ferro-AAT) with robust negative transconductance, enabling a wide range of reconfigurable functionalities with applications in both the digital and analog domains. The device relies on the integration of a hafnia-based ferroelectric gate stack on a vertical nanowire tunnel field-effect transistor. Through intentional gate/source overlap and tunnel-junction engineering, we demonstrate enhanced antiambipolarity with a high negative transconductance that is reconfigurable using the nonvolatile remanent polarization of the ferroelectric. Experimental validation highlights the versatility of this ferro-AAT in two implementation scenarios: content addressable memory (CAM) for high-density data search and reconfigurable signal processing in analog circuits. As a single-transistor cell for CAMs, the ferro-AAT shows subpicojoule operation for one search with a compact footprint of ∼0.01 μm2. For single-transistor-based signal modulation, multistate reconfigurations and high power conversion (>95%) are achieved in the ferro-AAT, resulting in a significant reduction in the complexity of analog circuit design. Our results reveal that the distinctive device properties allow ferro-AATs to operate beyond conventional transistors with multiple reconfigurable functionalities, ultrascaled footprint, and low power consumption.
Collapse
Affiliation(s)
- Zhongyunshen Zhu
- Department of Electrical
and Information Technology, Lund University, Lund 221 00, Sweden
| | | | - Lars-Erik Wernersson
- Department of Electrical
and Information Technology, Lund University, Lund 221 00, Sweden
| |
Collapse
|
2
|
Paupy N, Oulad Elhmaidi Z, Chapotot A, Hanuš T, Arias-Zapata J, Ilahi B, Heintz A, Poungoué Mbeunmi AB, Arvinte R, Aziziyan MR, Daniel V, Hamon G, Chrétien J, Zouaghi F, Ayari A, Mouchel L, Henriques J, Demoulin L, Diallo TM, Provost PO, Pelletier H, Volatier M, Kurstjens R, Cho J, Courtois G, Dessein K, Arcand S, Dubuc C, Jaouad A, Quaegebeur N, Gosselin R, Machon D, Arès R, Darnon M, Boucherif A. Wafer-scale detachable monocrystalline germanium nanomembranes for the growth of III-V materials and substrate reuse. NANOSCALE ADVANCES 2023; 5:4696-4702. [PMID: 37705792 PMCID: PMC10496881 DOI: 10.1039/d3na00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 09/15/2023]
Abstract
Germanium (Ge) is increasingly used as a substrate for high-performance optoelectronics, photovoltaics, and electronic devices. These devices are usually grown on thick and rigid Ge substrates manufactured by classical wafering techniques. Nanomembranes (NMs) provide an alternative to this approach while offering wafer-scale lateral dimensions, weight reduction, waste limitation, and cost effectiveness. Herein, we introduce the Porous germanium Efficient Epitaxial LayEr Release (PEELER) process, which consists of the fabrication of wafer-scale detachable Ge NMs on porous Ge (PGe) and substrate reuse. We demonstrate the growth of Ge NMs with monocrystalline quality as revealed by high-resolution transmission electron microscopy (HRTEM) characterization. Together with the surface roughness below 1 nm, it makes the Ge NMs suitable for growth of III-V materials. Additionally, the embedded nanoengineered weak layer enables the detachment of the Ge NMs. Finally, we demonstrate the wet-etch-reconditioning process of the Ge substrate, allowing its reuse, to produce multiple free-standing NMs from a single parent wafer. The PEELER process significantly reduces the consumption of Ge in the fabrication process, paving the way for a new generation of low-cost flexible optoelectronic devices.
Collapse
Affiliation(s)
- Nicolas Paupy
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Zakaria Oulad Elhmaidi
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Alexandre Chapotot
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Tadeáš Hanuš
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Javier Arias-Zapata
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Bouraoui Ilahi
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Alexandre Heintz
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Alex Brice Poungoué Mbeunmi
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Roxana Arvinte
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Mohammad Reza Aziziyan
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Valentin Daniel
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Gwenaëlle Hamon
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Jérémie Chrétien
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Firas Zouaghi
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Ahmed Ayari
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Laurie Mouchel
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Jonathan Henriques
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Loïc Demoulin
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Thierno Mamoudou Diallo
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Philippe-Olivier Provost
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Hubert Pelletier
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Maïté Volatier
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Rufi Kurstjens
- Umicore Electro-Optic Materials Watertorenstraat 33 2250 Olen Belgium
| | - Jinyoun Cho
- Umicore Electro-Optic Materials Watertorenstraat 33 2250 Olen Belgium
| | | | - Kristof Dessein
- Umicore Electro-Optic Materials Watertorenstraat 33 2250 Olen Belgium
| | - Sébastien Arcand
- Saint-Augustin Canada Electric Inc. 75 rue d'Anvers Saint-Augustin G3A 1S5 QC Canada
| | - Christian Dubuc
- Saint-Augustin Canada Electric Inc. 75 rue d'Anvers Saint-Augustin G3A 1S5 QC Canada
| | - Abdelatif Jaouad
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Nicolas Quaegebeur
- Department of Mechanical Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université Sherbrooke J1K 2R1 QC Canada
| | - Ryan Gosselin
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université Sherbrooke J1K OA5, QC Canada
| | - Denis Machon
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon F-69622 Villeurbanne cedex France
| | - Richard Arès
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Maxime Darnon
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| | - Abderraouf Boucherif
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université Sherbrooke J1K 0A5 QC Canada
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS IRL-3463, Université de Sherbrooke, 3000 Boulevard Université Sherbrooke Québec J1K OA5 Canada
| |
Collapse
|
3
|
Lee C, Lee C, Lee S, Choi J, Yoo H, Im SG. A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors. Nat Commun 2023; 14:3757. [PMID: 37353504 DOI: 10.1038/s41467-023-39394-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
A new type of heterojunction non-volatile memory transistor (H-MTR) has been developed, in which the negative transconductance (NTC) characteristics can be controlled systematically by a drain-aligned floating gate. In the H-MTR, a reliable transition between N-shaped transfer curves with distinct NTC and monolithically current-increasing transfer curves without apparent NTC can be accomplished through programming operation. Based on the H-MTR, a binary/ternary reconfigurable logic inverter (R-inverter) has been successfully implemented, which showed an unprecedentedly high static noise margin of 85% for binary logic operation and 59% for ternary logic operation, as well as long-term stability and outstanding cycle endurance. Furthermore, a ternary/binary dynamic logic conversion-in-memory has been demonstrated using a serially-connected R-inverter chain. The ternary/binary dynamic logic conversion-in-memory could generate three different output logic sequences for the same input signal in three logic levels, which is a new logic computing method that has never been presented before.
Collapse
Affiliation(s)
- Chungryeol Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea
| | - Changhyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea
| | - Seungmin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea
| | - Junhwan Choi
- Department of Chemical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin, 16890, South Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea.
- KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea.
| |
Collapse
|
4
|
Schwarz M, Vethaak TD, Derycke V, Francheteau A, Iniguez B, Kataria S, Kloes A, Lefloch F, Lemme M, Snyder JP, Weber WM, Calvet LE. The Schottky barrier transistor in emerging electronic devices. NANOTECHNOLOGY 2023; 34:352002. [PMID: 37100049 DOI: 10.1088/1361-6528/acd05f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
This paper explores how the Schottky barrier (SB) transistor is used in a variety of applications and material systems. A discussion of SB formation, current transport processes, and an overview of modeling are first considered. Three discussions follow, which detail the role of SB transistors in high performance, ubiquitous and cryogenic electronics. For high performance computing, the SB typically needs to be minimized to achieve optimal performance and we explore the methods adopted in carbon nanotube technology and two-dimensional electronics. On the contrary for ubiquitous electronics, the SB can be used advantageously in source-gated transistors and reconfigurable field-effect transistors (FETs) for sensors, neuromorphic hardware and security applications. Similarly, judicious use of an SB can be an asset for applications involving Josephson junction FETs.
Collapse
Affiliation(s)
| | - Tom D Vethaak
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Vincent Derycke
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, F-91191, France
| | | | | | | | | | - Francois Lefloch
- University Grenoble Alps, GINP, CEA-IRIG-PHELIQS, Grenoble, France
| | | | | | - Walter M Weber
- Technische Universität Wien, Institute of Solid State Electronics, Vienna, Austria
| | | |
Collapse
|
5
|
Wind L, Sistani M, Böckle R, Smoliner J, Vukŭsić L, Aberl J, Brehm M, Schweizer P, Maeder X, Michler J, Fournel F, Hartmann J, Weber WM. Composition Dependent Electrical Transport in Si 1-x Ge x Nanosheets with Monolithic Single-Elementary Al Contacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204178. [PMID: 36135726 PMCID: PMC11475588 DOI: 10.1002/smll.202204178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Si1-x Gex is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si1-x Gex junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si1-x Gex heterostructures, obtained from a thermally induced exchange between ultra-thin Si1-x Gex nanosheets and Al layers are reported. Remarkably, no intermetallic phases are found after the exchange process. Instead, abrupt, flat, and void-free junctions of high structural quality can be obtained. Interestingly, ultra-thin interfacial Si layers are formed between the metal and Si1-x Gex segments, explaining the morphologic stability. Integrated into omega-gated Schottky barrier transistors with the channel length being defined by the selective transformation of Si1-x Gex into single-elementary Al leads, a detailed analysis of the transport is conducted. In this respect, a report on a highly versatile platform with Si1-x Gex composition-dependent properties ranging from highly transparent contacts to distinct Schottky barriers is provided. Most notably, the presented abrupt, robust, and reliable metal-Si1-x Gex junctions can open up new device implementations for different types of emerging nanoelectronic, optoelectronic, and quantum devices.
Collapse
Affiliation(s)
- Lukas Wind
- Institute of Solid State ElectronicsTechnische Universität WienGußhausstraße 25‐25aVienna1040Austria
| | - Masiar Sistani
- Institute of Solid State ElectronicsTechnische Universität WienGußhausstraße 25‐25aVienna1040Austria
| | - Raphael Böckle
- Institute of Solid State ElectronicsTechnische Universität WienGußhausstraße 25‐25aVienna1040Austria
| | - Jürgen Smoliner
- Institute of Solid State ElectronicsTechnische Universität WienGußhausstraße 25‐25aVienna1040Austria
| | - Lada Vukŭsić
- Institute of Semiconductor and Solid State PhysicsJohannes Kepler UniversityAltenberger Straße 69Linz4040Austria
| | - Johannes Aberl
- Institute of Semiconductor and Solid State PhysicsJohannes Kepler UniversityAltenberger Straße 69Linz4040Austria
| | - Moritz Brehm
- Institute of Semiconductor and Solid State PhysicsJohannes Kepler UniversityAltenberger Straße 69Linz4040Austria
| | - Peter Schweizer
- Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Mechanics of Materials and NanostructuresFeuerwerkstrasse 39Thun3602Switzerland
| | - Xavier Maeder
- Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Mechanics of Materials and NanostructuresFeuerwerkstrasse 39Thun3602Switzerland
| | - Johann Michler
- Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Mechanics of Materials and NanostructuresFeuerwerkstrasse 39Thun3602Switzerland
| | - Frank Fournel
- CEA‐LETIUniversity Grenoble Alpes17 Avenue des MartyrsGrenoble38000France
| | | | - Walter M. Weber
- Institute of Solid State ElectronicsTechnische Universität WienGußhausstraße 25‐25aVienna1040Austria
| |
Collapse
|
6
|
Wind L, Böckle R, Sistani M, Schweizer P, Maeder X, Michler J, Murphey CG, Cahoon J, Weber WM. Monolithic and Single-Crystalline Aluminum-Silicon Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26238-26244. [PMID: 35621308 PMCID: PMC9185687 DOI: 10.1021/acsami.2c04599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Overcoming the difficulty in the precise definition of the metal phase of metal-Si heterostructures is among the key prerequisites to enable reproducible next-generation nanoelectronic, optoelectronic, and quantum devices. Here, we report on the formation of monolithic Al-Si heterostructures obtained from both bottom-up and top-down fabricated Si nanostructures and Al contacts. This is enabled by a thermally induced Al-Si exchange reaction, which forms abrupt and void-free metal-semiconductor interfaces in contrast to their bulk counterparts. The selective and controllable transformation of Si NWs into Al provides a nanodevice fabrication platform with high-quality monolithic and single-crystalline Al contacts, revealing resistivities as low as ρ = (6.31 ± 1.17) × 10-8 Ω m and breakdown current densities of Jmax = (1 ± 0.13) × 1012 Ω m-2. Combining transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the composition as well as the crystalline nature of the presented Al-Si-Al heterostructures, with no intermetallic phases formed during the exchange process in contrast to state-of-the-art metal silicides. The thereof formed single-element Al contacts explain the robustness and reproducibility of the junctions. Detailed and systematic electrical characterizations carried out on back- and top-gated heterostructure devices revealed symmetric effective Schottky barriers for electrons and holes. Most importantly, fulfilling compatibility with modern complementary metal-oxide semiconductor fabrication, the proposed thermally induced Al-Si exchange reaction may give rise to the development of next-generation reconfigurable electronics relying on reproducible nanojunctions.
Collapse
Affiliation(s)
- Lukas Wind
- Institute
of Solid State Electronics, Technische Universität
Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria
| | - Raphael Böckle
- Institute
of Solid State Electronics, Technische Universität
Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria
| | - Masiar Sistani
- Institute
of Solid State Electronics, Technische Universität
Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria
| | - Peter Schweizer
- Swiss
Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkstrasse 39, 3602 Thun, Switzerland
| | - Xavier Maeder
- Swiss
Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkstrasse 39, 3602 Thun, Switzerland
| | - Johann Michler
- Swiss
Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkstrasse 39, 3602 Thun, Switzerland
| | - Corban G.E. Murphey
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - James Cahoon
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Walter M. Weber
- Institute
of Solid State Electronics, Technische Universität
Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria
| |
Collapse
|
7
|
Wei YN, Hu XG, Zhang JW, Tong B, Du JH, Liu C, Sun DM, Liu C. Fermi-Level Depinning in Metal/Ge Junctions by Inserting a Carbon Nanotube Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201840. [PMID: 35561072 DOI: 10.1002/smll.202201840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Germanium (Ge)-based devices are recognized as one of the most promising next-generation technologies for extending Moore's law. However, one of the critical issues is Fermi-level pinning (FLP) at the metal/n-Ge interface, and the resulting large contact resistance seriously degrades their performance. The insertion of a thin layer is one main technique for FLP modulation; however, the contact resistance is still limited by the remaining barrier height and the resistance induced by the insertion layer. In addition, the proposed depinning mechanisms are also controversial. Here, the authors report a wafer-scale carbon nanotube (CNT) insertion method to alleviate FLP. The inserted conductive film reduces the effective Schottky barrier height without inducing a large resistance, leading to ohmic contact and the smallest contact resistance between a metal and a lightly doped n-Ge. These devices also indicate that the metal-induced gap states mechanism is responsible for the pinning. Based on the proposed technology, a wafer-scale planar diode array is fabricated at room temperature without using the traditional ion-implantation and annealing technology, achieving an on-to-off current ratio of 4.59 × 104 . This work provides a new way of FLP modulation that helps to improve device performance with new materials.
Collapse
Affiliation(s)
- Yu-Ning Wei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Xian-Gang Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Jian-Wei Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dong-Nanhu Road, Changchun, 130033, P. R. China
| | - Bo Tong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Jin-Hong Du
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Dong-Ming Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Chi Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
8
|
Graphene/Ferroelectric (Ge-Doped HfO2) Adaptable Transistors Acting as Reconfigurable Logic Gates. NANOMATERIALS 2022; 12:nano12020279. [PMID: 35055296 PMCID: PMC8778263 DOI: 10.3390/nano12020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023]
Abstract
We present an array of 225 field-effect transistors (FETs), where each of them has a graphene monolayer channel grown on a 3-layer deposited stack of 22 nm control HfO2/5 nm Ge-HfO2 intermediate layer/8 nm tunnel HfO2/p-Si substrate. The intermediate layer is ferroelectric and acts as a floating gate. All transistors have two top gates, while the p-Si substrate is acting as a back gate. We show that these FETs are acting memtransistors, working as two-input reconfigurable logic gates with memory, the type of the logic gate depending only on the values of the applied gate voltages and the choice of a threshold current.
Collapse
|