1
|
Bourdon L, Afrose SP, Agarwal S, Das D, Singh R, Di Cicco A, Lévy D, Yamada A, Baigl D, Franco E. Nanotubes Growth by Self-Assembly of DNA Strands at Room Temperature. ACS NANO 2025. [PMID: 40340345 DOI: 10.1021/acsnano.4c17516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Artificial biomolecular nanotubes are a promising approach to building materials mimicking the capacity of the cellular cytoskeleton to grow and self-organize dynamically. Nucleic acid nanotechnology has demonstrated a variety of self-assembling nanotubes with programmable, robust features and morphological similarities to actual cytoskeleton components. However, their production typically requires thermal annealing, which not only poses a general constraint on their potential applications but is also incompatible with physiological conditions. Here, we demonstrate that DNA nanotubes can self-assemble from a simple mixture of five short DNA strands at constant room temperature, growing for extended periods of time in bulk conditions as well as under confinement. Assembly is achieved using a monovalent salt buffer, which ensures a faithful nanoscale arrangement and avoids nanotube aggregation. We observe the formation of individual nanotubes up to 20 days with a diameter of 22 ± 4 nm and length of several tens of micrometers. We finally encapsulate the strands in microsized compartments, such as water-in-oil microdroplets and giant unilamellar vesicles serving as simple cell models. Notably, nanotubes not only isothermally self-assemble directly inside the microcompartments but also self-organize into dynamic higher-order structures resembling rings and dynamic networks. Our study provides an advantageous method for in situ assembly of programmable biomolecular scaffolds and materials using synthetic DNA strands without requirements of thermal treatment.
Collapse
Affiliation(s)
- Laura Bourdon
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Syed Pavel Afrose
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles 90095, California, United States
| | - Siddharth Agarwal
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles 90095, California, United States
| | - Debajyoti Das
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
| | - Rajat Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
- Comprehensive Liver Research Center at University of California, Los Angeles 90095, Los Angeles, California, United States
| | - Aurélie Di Cicco
- Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Institut Curie, Paris 75005, France
| | - Daniel Lévy
- Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Institut Curie, Paris 75005, France
| | - Ayako Yamada
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles 90095, California, United States
| |
Collapse
|
2
|
Pedersen ABT, Andersen DG, Jakobsen JH, Montasell MC, Zelikin AN. Receptor-Mediated Transmembrane Activation of Protein Folding in Synthetic Cells. Bioconjug Chem 2025; 36:782-791. [PMID: 40094293 DOI: 10.1021/acs.bioconjchem.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Synthetic cells are a rapidly maturing platform with emerging applications in biomedicine and biotechnology. The specific novelty of this work is that we develop synthetic cells that respond to an extracellular stimulus by performing the folding of an encapsulated polypeptide into a functional enzyme. To this end, we developed artificial transmembrane signaling receptors. These contain an extracellular enzyme-responsive group, a self-immolative linker as the mechanism of signal transduction, and a secondary messenger molecule with intracellular activity. The secondary messenger is chosen such that it initiates protein refolding from the denatured polypeptide. Results of this study expand the molecular toolbox for the design of synthetic cells with life-like, responsive behavior.
Collapse
Affiliation(s)
| | | | | | | | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
3
|
Patra S, Dhiman S, George SJ. Redox-Controlled, Sequential Self-Sorting of Supramolecular Assemblies in Model Protocells. Angew Chem Int Ed Engl 2025:e202500456. [PMID: 40192302 DOI: 10.1002/anie.202500456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Self-sorting of cellular components is essential for maintaining order and function in living systems, enabling complex processes to operate seamlessly. Emulating such self-sorting in synthetic self-assembly, however, has conventionally relied on structural or chirality mismatches of monomers yielding self-sorted systems under thermodynamic conditions. In contrast, reaction-coupled, kinetically controlled self-assembly, ubiquitous in biological systems, is critical for achieving spatiotemporal characteristics. Extending this principle to temporally self-sorted synthetic assemblies is key to developing multi-component biomimetic systems. Herein, we present a strategy towards this direction, to achieve sequential self-sorting of supramolecular assemblies through differences in the chemical-reactivity of monomers, coupled to redox-reactions. This approach exploits the distinct redox potentials of monomers to achieve precise temporal-control over self-sorting, while inherent structural mismatches among monomers ensure the kinetic stability of self-sorted state. Reduction reactions transiently disrupt their assemblies into dormant inactive monomeric states, while subsequent kinetically controlled reassembly occurs via reversible oxidation reactions. Finally, utilizing this sequential self-sorting, we aim to mimic multicomponent cellular self-organization by demonstrating the kinetically controlled growth of self-sorted structures in the presence of model protocells, using lipid vesicles as compartments. Although spatial-distribution remains non-selective, the dormant monomeric states facilitate monomer encapsulation and the unprecedented stepwise-formation of self-sorted assemblies within model protocells.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research(JNCASR), Jakkur, Bangalore, 560064, India
| | - Shikha Dhiman
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research(JNCASR), Jakkur, Bangalore, 560064, India
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research(JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
4
|
Tran MP, Chakraborty T, Poppleton E, Monari L, Illig M, Giessler F, Göpfrich K. Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01879-3. [PMID: 40097648 DOI: 10.1038/s41565-025-01879-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025]
Abstract
Bottom-up synthetic biology seeks to engineer a cell from molecular building blocks. Using DNA nanotechnology, building blocks, such as cytoskeletons, have been reverse-engineered. However, DNA nanostructures rely on chemical synthesis and thermal annealing, and therefore synthetic cells cannot produce them from their constituents such as nucleotides. Here we introduce RNA origami cytoskeleton mimics as alternative nucleic acid-based molecular hardware for synthetic cells, which we express directly inside giant unilamellar lipid vesicles (GUVs) containing a DNA template and a polymerase, chemically fuelled by feeding nucleotides from the outside. We designed RNA origami tiles that fold upon transcription and self-assemble into micrometre-long, three-dimensional RNA origami nanotubes under isothermal conditions. We observe that sequence mutations on the DNA template lead to RNA origami nanotubes and closed-ring phenotypes. Molecular dynamics simulations show that these phenotypic transitions are governed by alterations in the stability of RNA secondary structures. In addition, we achieve cortex formation with aptamer-functionalized RNA nanotubes and show that nanotube polymerization leads to membrane deformation. Altogether, our data suggest that the expression of RNA origami-based hardware will help to explore active, evolvable and RNA-based synthetic cells.
Collapse
Affiliation(s)
- Mai P Tran
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Taniya Chakraborty
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Erik Poppleton
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Biomolecular Mechanics Group, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Luca Monari
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Maja Illig
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Franziska Giessler
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
5
|
Postigo A, Marcuello C, Verstraeten W, Sarasa S, Walther T, Lostao A, Göpfrich K, Del Barrio J, Hernández-Ainsa S. Folding and Functionalizing DNA Origami: A Versatile Approach Using a Reactive Polyamine. J Am Chem Soc 2025; 147:3919-3924. [PMID: 39869392 DOI: 10.1021/jacs.4c12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
DNA nanotechnology is a powerful synthetic approach to crafting diverse nanostructures through self-assembly. Chemical decoration of such nanostructures is often required to tailor their properties for specific applications. In this Letter, we introduce a pioneering method to direct the assembly and enable the functionalization of DNA nanostructures using an azide-bearing functional polyamine. We first demonstrate the successful polyamine-assisted folding of a scaffolded DNA origami nanostructure equipped with reactive azide groups. Leveraging this reactivity, we next showcase the decoration of the DNA origami via strain-promoted azide-alkyne cycloaddition with dibenzocyclooctyne-containing functional molecules. Specifically, we incorporate a fluorophore (Cy5), polyethylene glycol (PEG), and a hydrophobic phosphatidylethanolamine (PE) tag to tailor the properties of our DNA origami nanostructures. Our approach is expected to streamline and reduce the cost of chemical customization of intricate DNA nanostructures, paving the way for enhanced versatility and applicability.
Collapse
Affiliation(s)
- Alejandro Postigo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, 50018 Zaragoza, Spain
| | - William Verstraeten
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Santiago Sarasa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
| | - Tobias Walther
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
- Fundación ARAID, Av. Ranillas 1-D, 50018 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, 50018 Zaragoza, Spain
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
- Fundación ARAID, Av. Ranillas 1-D, 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Fan S, Wang S, Ding L, Speck T, Yan H, Nussberger S, Liu N. Morphology remodelling and membrane channel formation in synthetic cells via reconfigurable DNA nanorafts. NATURE MATERIALS 2025; 24:278-286. [PMID: 39805958 PMCID: PMC11790494 DOI: 10.1038/s41563-024-02075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs). We demonstrate that reshaping of DNA rafts at the nanoscale can be coupled to reshaping of GUVs at the microscale. The nanorafts collectively undergo reversible transitions between isotropic and short-range local order on the lipid membrane, programmably remodelling the GUV shape. Assisted by the biogenic pores, during GUV shape recovery the locally ordered DNA rafts perforate the membrane, forming sealable synthetic channels for large cargo transport. Our work outlines a versatile platform for interfacing reconfigurable DNA nanostructures with synthetic cells, expanding the potential of DNA nanotechnology in synthetic biology.
Collapse
Affiliation(s)
- Sisi Fan
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Shuo Wang
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Longjiang Ding
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, Stuttgart, Germany
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, USA.
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany.
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| |
Collapse
|
7
|
Hindley JW. Constructing mechanosensitive signalling pathways de novo in synthetic cells. Biochem Soc Trans 2025:BST20231285. [PMID: 39838922 DOI: 10.1042/bst20231285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
Biological mechanotransduction enables cells to sense and respond to mechanical forces in their local environment through changes in cell structure and gene expression, resulting in downstream changes in cell function. However, the complexity of living systems obfuscates the mechanisms of mechanotransduction, and hence the study of these processes in vitro has been critical in characterising the function of existing mechanosensitive membrane proteins. Synthetic cells are biomolecular compartments that aim to mimic the organisation, functionality and behaviours of biological systems, and represent the next step in the development of in vitro cell models. In recent years, mechanosensitive channels have been incorporated into synthetic cells to create de novo mechanosensitive signalling pathways. Here, I will discuss these developments, from the molecular parts used to construct existing pathways, the functionality of such systems, and potential future directions in engineering synthetic mechanotransduction. The recapitulation of mechanotransduction in synthetic biology will facilitate an improved understanding of biological signalling through the study of molecular interactions across length scales, whilst simultaneously generating new biotechnologies that can be applied as diagnostics, microreactors and therapeutics.
Collapse
Affiliation(s)
- James W Hindley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
8
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
9
|
Georgiou E, Cabello-Garcia J, Xing Y, Howorka S. DNA Origami - Lipid Membrane Interactions Controlled by Nanoscale Sterics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404720. [PMID: 39162223 DOI: 10.1002/smll.202404720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Indexed: 08/21/2024]
Abstract
DNA nanostructures designed to interact with bilayer membranes are of fundamental interest as they mimic biological cytoskeletons and other membrane-associated proteins for applications in synthetic biology, biosensing, and biological research. Yet, there is limited insight into how the binary interactions are influenced by steric effects produced by 3D geometries of DNA structures and membranes. This work uses a 3D DNA nanostructure with membrane anchors in four different steric environments to elucidate the interaction with membrane vesicles of varying sizes and different local bilayer morphology. It is found that interactions are significantly affected by the steric environments of the anchors -often against predicted accessibility- as well as local nanoscale morphology of bilayers rather than on the usually considered global vesicle size. Furthermore, anchor-mediated bilayer interactions are co-controlled by weak contacts with non-lipidated DNA regions, as showcased by pioneering size discrimination between 50 and 200 nm vesicles. This study extends DNA nanotechnology to controlled bilayer interactions and can facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.
Collapse
Affiliation(s)
- Elena Georgiou
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Javier Cabello-Garcia
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
10
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. Curr Opin Cell Biol 2024; 88:102377. [PMID: 38823338 PMCID: PMC11193448 DOI: 10.1016/j.ceb.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Jahnke K, Pavlovic M, Xu W, Chen A, Knowles TPJ, Arriaga LR, Weitz DA. Polysaccharide functionalization reduces lipid vesicle stiffness. Proc Natl Acad Sci U S A 2024; 121:e2317227121. [PMID: 38771870 PMCID: PMC11145274 DOI: 10.1073/pnas.2317227121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.
Collapse
Affiliation(s)
- Kevin Jahnke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Marko Pavlovic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Wentao Xu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Laura R. Arriaga
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Physics, Harvard University, Cambridge, MA02138
| |
Collapse
|
14
|
Jiang Q, Shang Y, Xie Y, Ding B. DNA Origami: From Molecular Folding Art to Drug Delivery Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301035. [PMID: 37715333 DOI: 10.1002/adma.202301035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Indexed: 09/17/2023]
Abstract
DNA molecules that store genetic information in living creatures can be repurposed as building blocks to construct artificial architectures, ranging from the nanoscale to the microscale. The precise fabrication of self-assembled DNA nanomaterials and their various applications have greatly impacted nanoscience and nanotechnology. More specifically, the DNA origami technique has realized the assembly of various nanostructures featuring rationally predesigned geometries, precise addressability, and versatile programmability, as well as remarkable biocompatibility. These features have elevated DNA origami from academic interest to an emerging class of drug delivery platform for a wide range of diseases. In this minireview, the latest advances in the burgeoning field of DNA-origami-based innovative platforms for regulating biological functions and delivering versatile drugs are presented. Challenges regarding the novel drug vehicle's safety, stability, targeting strategy, and future clinical translation are also discussed.
Collapse
Affiliation(s)
- Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
| | - Yiming Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
15
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574656. [PMID: 38260424 PMCID: PMC10802412 DOI: 10.1101/2024.01.08.574656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or other similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
17
|
Illig M, Jahnke K, Weise LP, Scheffold M, Mersdorf U, Drechsler H, Zhang Y, Diez S, Kierfeld J, Göpfrich K. Triggered contraction of self-assembled micron-scale DNA nanotube rings. Nat Commun 2024; 15:2307. [PMID: 38485920 PMCID: PMC10940629 DOI: 10.1038/s41467-024-46339-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.
Collapse
Affiliation(s)
- Maja Illig
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
- Harvard University, School of Engineering and Applied Sciences (SEAS), 9 Oxford Street, 02138, Cambridge, MA, USA
| | - Lukas P Weise
- TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4, 44221, Dortmund, Germany
| | - Marlene Scheffold
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ulrike Mersdorf
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Hauke Drechsler
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
- Tübingen University, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Jan Kierfeld
- TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4, 44221, Dortmund, Germany.
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Luo ZH, Chen C, Zhao QH, Deng NN. Functional metal-phenolic cortical cytoskeleton for artificial cells. SCIENCE ADVANCES 2024; 10:eadj4047. [PMID: 38363847 PMCID: PMC10871533 DOI: 10.1126/sciadv.adj4047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Cortex-like cytoskeleton, a thin layer of cross-linked cytoplasmic proteins underlying the cell membrane, plays an essential role in modulating membrane behavior and cell surface properties. However, bottom-up construction of functional cortex-like cytoskeleton in artificial cells remains a challenge. Here, we present metal-phenolic networks as artificial cortical cytoskeletons in liposome-based artificial cells. The metal-phenolic cytoskeleton-reinforced artificial cells exhibit long-term stability, enhanced resistance to a variety of harsh environments, tunable permeability, and well-controlled morphologies. We anticipate that our stable artificial cell models will stride forward to practical applications of liposome-based microsystem.
Collapse
Affiliation(s)
- Zhen-Hong Luo
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Shanghai 200240, China
| | - Chen Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Shanghai 200240, China
| | - Qi-Hong Zhao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Shanghai 200240, China
| | - Nan-Nan Deng
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Shanghai 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, Sichuan, China
| |
Collapse
|
19
|
Andersen DG, Pedersen AB, Jørgensen MH, Montasell MC, Søgaard AB, Chen G, Schroeder A, Andersen GR, Zelikin AN. Chemical Zymogens and Transmembrane Activation of Transcription in Synthetic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309385. [PMID: 38009384 DOI: 10.1002/adma.202309385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Indexed: 11/28/2023]
Abstract
In this work, synthetic cells equipped with an artificial signaling pathway that connects an extracellular trigger event to the activation of intracellular transcription are engineered. Learning from nature, this is done via an engineering of responsive enzymes, such that activation of enzymatic activity can be triggered by an external biochemical stimulus. Reversibly deactivated creatine kinase to achieve triggered production of adenosine triphosphate, and a reversibly deactivated nucleic acid polymerase for on-demand synthesis of RNA are engineered. An extracellular, enzyme-activated production of a diffusible zymogen activator is also designed. The key achievement of this work is that the importance of cellularity is illustrated whereby the separation of biochemical partners is essential to resolve their incompatibility, to enable transcription within the confines of a synthetic cell. The herein designed biochemical pathway and the engineered synthetic cells are arguably primitive compared to their natural counterpart. Nevertheless, the results present a significant step toward the design of synthetic cells with responsive behavior, en route from abiotic to life-like cell mimics.
Collapse
Affiliation(s)
| | | | | | | | | | - Gal Chen
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
20
|
Kamijo T, Yazawa K. Nucleotide-based regenerated fiber production using salmon (Oncorhynchus keta) milt waste by solution spinning. Int J Biol Macromol 2024; 258:128866. [PMID: 38123035 DOI: 10.1016/j.ijbiomac.2023.128866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The use of nucleic acid-derived fibers has not been developed in contrast to the traditional use of polysaccharide- and protein-based fibers in daily life. Salmon, Oncorhynchus keta, is an abundant fishery resource, and its milt contains a huge amount of DNA. Most of the milt is discarded because it degrades easily and is unsuitable for food consumption. DNA-based fibers are expected to possess functionality and mechanical strength because DNA is a polyanion with a high molecular weight. Here, using DNA extracted from the salmon milt, we produced nucleotide-based fibers. A solution spinning system was applied using ethanol as a coagulant. Adding the salt to the dope solution reduced the solubility of DNA, which was essential for the successful spinning of DNA-based fibers. The obtained fibers became insoluble in water by ultraviolet (UV) exposure. Fibril-like structures were detected on the fracture surface, and humidity influenced the conformational structure. This study focuses on the bulk-scale production of biodegradable DNA-based fibers. Therefore, it can be used not only for clothing and filters but also as a functional material to remove harmful pollutants released into the ocean, such as heavy metal ions and aromatic derivatives.
Collapse
Affiliation(s)
- Takafumi Kamijo
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Kenjiro Yazawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan; Division of Fibers and Textiles, Interdisciplinary Cluster for Cutting Edge Research, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
21
|
Llopis-Lorente A, Schotman MJG, Humeniuk HV, van Hest JCM, Dankers PYW, Abdelmohsen LKEA. Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles. Chem Sci 2024; 15:629-638. [PMID: 38179539 PMCID: PMC10763548 DOI: 10.1039/d3sc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 València Spain
| | - Maaike J G Schotman
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Heorhii V Humeniuk
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| |
Collapse
|
22
|
Staufer O. Breaking the bottleneck of synthetic cells. NATURE NANOTECHNOLOGY 2024; 19:3-4. [PMID: 37828265 DOI: 10.1038/s41565-023-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, Saarbrücken, Germany.
- Center for Biophysics, Saarland University, Campus Saarland, Saarbrücken, Germany.
- Max Planck Bristol Centre for Minimal Biology, Bristol, UK.
| |
Collapse
|
23
|
Van de Cauter L, van Buren L, Koenderink GH, Ganzinger KA. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions. SMALL METHODS 2023; 7:e2300416. [PMID: 37464561 DOI: 10.1002/smtd.202300416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.
Collapse
Affiliation(s)
- Lori Van de Cauter
- Autonomous Matter Department, AMOLF, Amsterdam, 1098 XG, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | | |
Collapse
|
24
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Jahnke K, Göpfrich K. Engineering DNA-based cytoskeletons for synthetic cells. Interface Focus 2023; 13:20230028. [PMID: 37577007 PMCID: PMC10415745 DOI: 10.1098/rsfs.2023.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Yang J, Jahnke K, Xin L, Jing X, Zhan P, Peil A, Griffo A, Škugor M, Yang D, Fan S, Göpfrich K, Yan H, Wang P, Liu N. Modulating Lipid Membrane Morphology by Dynamic DNA Origami Networks. NANO LETTERS 2023. [PMID: 37440701 DOI: 10.1021/acs.nanolett.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Membrane morphology and its dynamic adaptation regulate many cellular functions, which are often mediated by membrane proteins. Advances in DNA nanotechnology have enabled the realization of various protein-inspired structures and functions with precise control at the nanometer level, suggesting a viable tool to artificially engineer membrane morphology. In this work, we demonstrate a DNA origami cross (DOC) structure that can be anchored onto giant unilamellar vesicles (GUVs) and subsequently polymerized into micrometer-scale reconfigurable one-dimensional (1D) chains or two-dimensional (2D) lattices. Such DNA origami-based networks can be switched between left-handed (LH) and right-handed (RH) conformations by DNA fuels and exhibit potent efficacy in remodeling the membrane curvatures of GUVs. This work sheds light on designing hierarchically assembled dynamic DNA systems for the programmable modulation of synthetic cells for useful applications.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, People's Republic of China
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ling Xin
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Xinxin Jing
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Pengfei Zhan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Andreas Peil
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Alessandra Griffo
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Marko Škugor
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, People's Republic of China
| | - Sisi Fan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg, Jahnstr. 29, 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheime Feld 329, 69120 Heidelberg, Germany
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, People's Republic of China
| | - Na Liu
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
28
|
Farag N, Đorđević M, Del Grosso E, Ricci F. Dynamic and Reversible Decoration of DNA-Based Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211274. [PMID: 36739507 DOI: 10.1002/adma.202211274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Indexed: 05/05/2023]
Abstract
An approach to achieving dynamic and reversible decoration of DNA-based scaffolds is demonstrated here. To do this, rationally engineered DNA tiles containing enzyme-responsive strands covalently conjugated to different molecular labels are employed. These strands are designed to be recognized and degraded by specific enzymes (i.e., Ribonuclease H, RNase H, or Uracil DNA Glycosylase, UDG) inducing their spontaneous de-hybridization from the assembled tile and replacement by a new strand conjugated to a different label. Multiple enzyme-responsive strands that specifically respond to different enzymes allow for dynamic, orthogonal, and reversible decoration of the DNA structures. As a proof-of-principle of the strategy, the possibility to orthogonally control the distribution of different labels (i.e., fluorophores and small molecules) on the same scaffold without crosstalk is demonstrated. By doing so, DNA scaffolds that display different antibody recognition patterns are obtained. The approach offers the possibility to control the decoration of higher-order supramolecular assemblies (including origami) with several functional moieties to achieve functional biomaterials with improved adaptability, precision, and sensing capabilities.
Collapse
Affiliation(s)
- Nada Farag
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Milan Đorđević
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Erica Del Grosso
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| |
Collapse
|
29
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
30
|
Arulkumaran N, Singer M, Howorka S, Burns JR. Creating complex protocells and prototissues using simple DNA building blocks. Nat Commun 2023; 14:1314. [PMID: 36898984 PMCID: PMC10006096 DOI: 10.1038/s41467-023-36875-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Building synthetic protocells and prototissues hinges on the formation of biomimetic skeletal frameworks. Recreating the complexity of cytoskeletal and exoskeletal fibers, with their widely varying dimensions, cellular locations and functions, represents a major material hurdle and intellectual challenge which is compounded by the additional demand of using simple building blocks to ease fabrication and control. Here we harness simplicity to create complexity by assembling structural frameworks from subunits that can support membrane-based protocells and prototissues. We show that five oligonucleotides can anneal into nanotubes or fibers whose tunable thicknesses and lengths spans four orders of magnitude. We demonstrate that the assemblies' location inside protocells is controllable to enhance their mechanical, functional and osmolar stability. Furthermore, the macrostructures can coat the outside of protocells to mimic exoskeletons and support the formation of millimeter-scale prototissues. Our strategy could be exploited in the bottom-up design of synthetic cells and tissues, to the generation of smart material devices in medicine.
Collapse
Affiliation(s)
- Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural and Molecular Biology, University Collegfige London, London, WC1H 0AJ, UK
| | - Jonathan R Burns
- Department of Chemistry, Institute of Structural and Molecular Biology, University Collegfige London, London, WC1H 0AJ, UK.
| |
Collapse
|
31
|
Fink A, Doll CR, Yagüe Relimpio A, Dreher Y, Spatz JP, Göpfrich K, Cavalcanti-Adam EA. Extracellular Cues Govern Shape and Cytoskeletal Organization in Giant Unilamellar Lipid Vesicles. ACS Synth Biol 2023; 12:369-374. [PMID: 36652603 PMCID: PMC9942188 DOI: 10.1021/acssynbio.2c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spontaneous and induced front-rear polarization and a subsequent asymmetric actin cytoskeleton is a crucial event leading to cell migration, a key process involved in a variety of physiological and pathological conditions such as tissue development, wound healing, and cancer. Migration of adherent cells relies on the balance between adhesion to the underlying matrix and cytoskeleton-driven front protrusion and rear retraction. A current challenge is to uncouple the effect of adhesion and shape from the contribution of the cytoskeleton in regulating the onset of front-rear polarization. Here, we present a minimal model system that introduces an asymmetric actin cytoskeleton in synthetic cells, which are resembled by giant unilamellar lipid vesicles (GUVs) adhering onto symmetric and asymmetric micropatterned surfaces. Surface micropatterning of streptavidin-coated regions with varying adhesion shape and area was achieved by maskless UV photopatterning. To further study the effects of GUV shape on the cytoskeletal organization, actin filaments were polymerized together with bundling proteins inside the GUVs. The micropatterns induce synthetic cell deformation upon adhesion to the surface, with the cell shape adapting to the pattern shape and size. As expected, asymmetric patterns induce an asymmetric deformation in adherent synthetic cells. Actin filaments orient along the long axis of the deformed GUV, when having a length similar to the size of the major axis, whereas short filaments exhibit random orientation. With this bottom-up approach we have laid the first steps to identify the relationship between cell front-rear polarization and cytoskeleton organization in the future. Such a minimal system will allow us to further study the major components needed to create a polarized cytoskeleton at the onset of migration.
Collapse
Affiliation(s)
- Andreas Fink
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Charlotte R. Doll
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ana Yagüe Relimpio
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,Institute
for Molecular Systems Engineering, University
of Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Yannik Dreher
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,E-mail:
| |
Collapse
|
32
|
Gonzales DT, Suraritdechachai S, Tang TYD. Compartmentalized Cell-Free Expression Systems for Building Synthetic Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:77-101. [PMID: 37306700 DOI: 10.1007/10_2023_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the grand challenges in bottom-up synthetic biology is the design and construction of synthetic cellular systems. One strategy toward this goal is the systematic reconstitution of biological processes using purified or non-living molecular components to recreate specific cellular functions such as metabolism, intercellular communication, signal transduction, and growth and division. Cell-free expression systems (CFES) are in vitro reconstitutions of the transcription and translation machinery found in cells and are a key technology for bottom-up synthetic biology. The open and simplified reaction environment of CFES has helped researchers discover fundamental concepts in the molecular biology of the cell. In recent decades, there has been a drive to encapsulate CFES reactions into cell-like compartments with the aim of building synthetic cells and multicellular systems. In this chapter, we discuss recent progress in compartmentalizing CFES to build simple and minimal models of biological processes that can help provide a better understanding of the process of self-assembly in molecularly complex systems.
Collapse
Affiliation(s)
- David T Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | | | - T -Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Physics of Life, Cluster of Excellence, TU Dresden, Dresden, Germany.
| |
Collapse
|
33
|
Bogawat Y, Krishnan S, Simmel FC, Santiago I. Tunable 2D diffusion of DNA nanostructures on lipid membranes. Biophys J 2022; 121:4810-4818. [PMID: 36243925 PMCID: PMC9811667 DOI: 10.1016/j.bpj.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023] Open
Abstract
DNA nanotechnology facilitates the synthesis of biomimetic models for studying biological systems. This work uses lipid bilayers as platforms for two-dimensional single-particle tracking of the dynamics of DNA nanostructures. Three different DNA origami structures adhere to the membrane through hybridization with cholesterol-modified strands. Their two-dimensional diffusion coefficient is modulated by changing the concentration of monovalent and divalent salts and the number of anchors. In addition, the diffusion coefficient is tuned by targeting cholesterol-modified anchor strands with strand-displacement reactions. We demonstrate a responsive system with changing diffusivity by selectively displacing membrane-bound anchor strands. We also show the programmed release of origami structures from the lipid membranes.
Collapse
Affiliation(s)
- Yash Bogawat
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Swati Krishnan
- Physics Department E14, Technical University of Munich, Garching, Germany; Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Friedrich C Simmel
- Physics Department E14, Technical University of Munich, Garching, Germany.
| | - Ibon Santiago
- Physics Department E14, Technical University of Munich, Garching, Germany; CIC nanoGUNE BRTA, Donostia-San Sebastián, Spain.
| |
Collapse
|
34
|
Li DY, Zhou ZH, Yu YL, Deng NN. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Cai C, Wu S, Zhang Y, Li F, Tan Z, Dong S. Poly(thioctic acid): From Bottom-Up Self-Assembly to 3D-Fused Deposition Modeling Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203630. [PMID: 36220340 PMCID: PMC9685451 DOI: 10.1002/advs.202203630] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the bottom-up assembly in nature, an artificial self-assembly pattern is introduced into 3D-fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time-dependent self-assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher-molecular-weight species and low-molecular-weight TA monomers. Poly(TA) and the newly formed TA further assembled into self-reinforcing materials via microscopic-phase separation. Bottom-up self-assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic-scale assembly) to poly(TA) and 3D printing (macroscopic-scale assembly) of poly(TA) are simultaneously achieved in the 3D-printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self-assembly of poly(TA) and TA. This study clearly demonstrates that micro- and macroscopic bottom-up self-assembly can be applied in 3D additive manufacturing.
Collapse
Affiliation(s)
- Changyong Cai
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Shuanggen Wu
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Yunfei Zhang
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Fenfang Li
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | - Zhijian Tan
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangsha410205China
| | - Shengyi Dong
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| |
Collapse
|
36
|
Arredondo D, Lakin MR. Operant conditioning of stochastic chemical reaction networks. PLoS Comput Biol 2022; 18:e1010676. [PMID: 36399506 PMCID: PMC9718418 DOI: 10.1371/journal.pcbi.1010676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/02/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022] Open
Abstract
Adapting one's behavior to environmental conditions and past experience is a key trait of living systems. In the biological world, there is evidence for adaptive behaviors such as learning even in naturally occurring, non-neural, single-celled organisms. In the bioengineered world, advances in synthetic cell engineering and biorobotics have created the possibility of implementing lifelike systems engineered from the bottom up. This will require the development of programmable control circuitry for such biomimetic systems that is capable of realizing such non-trivial and adaptive behavior, including modification of subsequent behavior in response to environmental feedback. To this end, we report the design of novel stochastic chemical reaction networks capable of probabilistic decision-making in response to stimuli. We show that a simple chemical reaction network motif can be tuned to produce arbitrary decision probabilities when choosing between two or more responses to a stimulus signal. We further show that simple feedback mechanisms from the environment can modify these probabilities over time, enabling the system to adapt its behavior dynamically in response to positive or negative reinforcement based on its decisions. This system thus acts as a form of operant conditioning of the chemical circuit, in the sense that feedback provided based on decisions taken by the circuit form the basis of the learning process. Our work thus demonstrates that simple chemical systems can be used to implement lifelike behavior in engineered biomimetic systems.
Collapse
Affiliation(s)
- David Arredondo
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Matthew R. Lakin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
37
|
Abstract
Over the past 40 years, structural and dynamic DNA nanotechnologies have undoubtedly demonstrated to be effective means for organizing matter at the nanoscale and reconfiguring equilibrium structures, in a predictable fashion and with an accuracy of a few nanometers. Recently, novel concepts and methodologies have been developed to integrate nonequilibrium dynamics into DNA nanostructures, opening the way to the construction of synthetic materials that can adapt to environmental changes and thus acquire new properties. In this Review, we summarize the strategies currently applied for the construction of synthetic DNA filaments and conclude by reporting some recent and most relevant examples of DNA filaments that can emulate typical structural and dynamic features of the cytoskeleton, such as compartmentalization in cell-like vesicles, support for active transport of cargos, sustained or transient growth, and responsiveness to external stimuli.
Collapse
|
38
|
Farag N, Ercolani G, Del Grosso E, Ricci F. DNA Tile Self‐Assembly Guided by Base Excision Repair Enzymes. Angew Chem Int Ed Engl 2022; 61:e202208367. [DOI: 10.1002/anie.202208367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Nada Farag
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Gianfranco Ercolani
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
39
|
Wang D, Yang Y, Chen F, Lyu Y, Tan W. Network topology-directed design of molecular CPU for cell-like dynamic information processing. SCIENCE ADVANCES 2022; 8:eabq0917. [PMID: 35947658 PMCID: PMC9365278 DOI: 10.1126/sciadv.abq0917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Natural cells (NCs) can automatically and continuously respond to fluctuant external information and distinguish meaningful stimuli from weak noise depending on their powerful genetic and protein networks. We herein report a network topology-directed design of dynamic molecular processing system (DMPS) as a molecular central processing unit that powers an artificial cell (AC) able to process fluctuant information in its immediate environment similar to NCs. By constructing a mixed cell community, ACs and NCs have synchronous response to fluctuant extracellular stimuli under physiological condition and in a blood vessel-mimic circulation system. We also show that fluctuant bioinformation released by NCs can be received and processed by ACs. The molecular design of DMPS-powered AC is expected to allow a profound understanding of biological systems, advance the construction of intelligent molecular systems, and promote more elegant bioengineering applications.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Farag N, Ercolani G, Del Grosso E, Ricci F. DNA Tile Self‐Assembly Guided by Base Excision Repair Enzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nada Farag
- Universita degli Studi di Roma Tor Vergata Chemistry ITALY
| | | | | | - Francesco Ricci
- University of Rome, Tor Vergata Department of Chemistry Via della Ricerca Scientifica 00133 Rome ITALY
| |
Collapse
|
41
|
Abstract
The cytoskeleton is an essential component of a cell. It controls the cell shape, establishes the internal organization, and performs vital biological functions. Building synthetic cytoskeletons that mimic key features of their natural counterparts delineates a crucial step towards synthetic cells assembled from the bottom up. To this end, DNA nanotechnology represents one of the most promising routes, given the inherent sequence specificity, addressability and programmability of DNA. Here we demonstrate functional DNA-based cytoskeletons operating in microfluidic cell-sized compartments. The synthetic cytoskeletons consist of DNA tiles self-assembled into filament networks. These filaments can be rationally designed and controlled to imitate features of natural cytoskeletons, including reversible assembly and ATP-triggered polymerization, and we also explore their potential for guided vesicle transport in cell-sized confinement. Also, they possess engineerable characteristics, including assembly and disassembly powered by DNA hybridization or aptamer–target interactions and autonomous transport of gold nanoparticles. This work underpins DNA nanotechnology as a key player in building synthetic cells. ![]()
Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.
Collapse
|