1
|
Wang D, Wang S, Dong Y, Wu X, Shen J, Feng S, Wang Z, Huang W. An Opto-Iontronic Cholesteric Liquid Crystalline Retina for Multimodal Circularly Polarized Neuromorphic Vision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419747. [PMID: 40025907 DOI: 10.1002/adma.202419747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Circularly polarized light (CPL) is fundamental to phase-controlled imaging, quantum optics, and optical computing. Conventional CPL detection, relying on polarizers and quarter-wave plates, complicates device design and reduces sensitivity. Among emerging CPL detectors, organic field-effect transistors (OFET) with helical organic semiconductors are highly promising due to their compact structures but suffer tedious synthesis, low dissymmetric factors (gph < 0.1), and high operating voltages (> 50 V). To address these issues, an opto-iontronic cholesteric liquid crystalline (i-CLC) film is developed that is both electrically and photonically active, serving as the dielectric in phototransistors. The well-defined cholesteric structure and broadly tunable pitches of the i-CLC film enable it to detect CPL with an excellent "handedness" selectivity across a broad spectrum. Moreover, its ionic nature provides a high capacitance (up to 580 nF cm- 2 @20 Hz). The resulting flexible CPL detectors achieve an unprecedentedly high dissymmetry factor (gph = 1.33) at low operating voltages (< 5 V), showcasing significant potential in optical communication and data encryption. Furthermore, leveraging high gph, they can perform in-sensor computing for highly accurate semantic segmentation using fused multimodal visual inputs (e.g., circularly polarized and ordinary light), achieving an accuracy of 75.73% and a mean intersection over the union of 0.3982, surpassing the performance of non-CPL photodetectors. Additionally, it optimizes power consumption by a factor of 102 compared to most conventional visual processing systems, offering a groundbreaking hardware solution for high-performance neuromorphic CPL vision.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shaocong Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
He C, Tang Z, Wang C, Wang Y, Hua Q, Liu L, Wang X, Schmidt OG, Maier SA, Ren H, Wang X, Pan A. Gradient-Metasurface-Contact Photodetector for Visible-to-Near-Infrared Spin Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418405. [PMID: 40091337 DOI: 10.1002/adma.202418405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Spin light detection is a rapidly advancing field with significant impact on diverse applications in biology, medicine, and photonics. Developing integrated circularly polarized light (CPL) detectors is pivotal for next-generation compact polarimeters. However, previous compact CPL detectors, based on natural materials or artificial resonant nanostructures, exhibit intrinsically weak CPL polarization sensitivity, are susceptible to other polarization states, and suffer from limited bandwidths. A gradient-metasurface-contact CPL photodetector is demonstrated operating at zero-bias with a high discrimination ratio (≈1.6 ✗ 104), broadband response (500-1100 nm), and immunity to non-CPL field components. The photodetector integrates InSe flakes with CPL-selective metasurface contacts, forming an asymmetric junction interface driven by CPL-dependent unidirectional propagating surface plasmon waves, generating zero-bias vectorial photocurrents. Furthermore, it is implemented the developed CPL photodetector in a multivalued logic system and demonstrated the optical decoding of CPL-encrypted communication signals. This metasurface contact engineering represents a new paradigm in light property detection, paving the way for future integrated optoelectronic systems for on-chip polarization detection.
Collapse
Affiliation(s)
- Chenglin He
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zilan Tang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chunhua Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yufan Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qingzhao Hua
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Liang Liu
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09111, Chemnitz, Germany
- International Institute for Intelligent Nanorobots and Nanosystems (IIINN), Fudan University, Shanghai, 200433, China
| | - Stefan A Maier
- School of Physics and Astronomy, Faculty of Science, Monash University, Victoria, Melbourne, 3800, Australia
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Haoran Ren
- School of Physics and Astronomy, Faculty of Science, Monash University, Victoria, Melbourne, 3800, Australia
| | - Xiaoxia Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Anlian Pan
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- School of Physics and Electronics, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
3
|
Lv J, Sun R, Gao X. Emerging devices based on chiral nanomaterials. NANOSCALE 2025; 17:3585-3599. [PMID: 39750744 DOI: 10.1039/d4nr03998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, etc., been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods. This review tries to offer a whole picture of these state-of-the-art conditions in these fields and offers perspectives on future development.
Collapse
Affiliation(s)
- Jiawei Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rui Sun
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Xiao Y, Shi A, Yang G, Yu Y, Nie Q, Qi S, Xiang C, Zhang T. Induced Circularly Polarized Luminescence From 0D Quantum Dots by 2D Chiral Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404913. [PMID: 39235369 DOI: 10.1002/smll.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Materials with circularly polarized luminescence (CPL) exhibit great application potential in biological scenes such as cell imaging, optical probes, etc. However, most developed materials are non-aqueous and toxic, which seriously restricts their compatibility with the life systems. Thus, it is necessary to explore a water-based CPL system with high biocompatibility so that to promote the biologic application process. Herein, a facile and efficient route to achieve the CPL properties of a functional aqueous solution is demonstrated by the combination of 0D quantum dots (QDs) and 2D chiral nanosheets. Benefited by the specific absorption ability of nanosheets for left/right-handed CPL, the QDs adsorbed onto the surface of nanosheets through hydrogen bond interactions showed apparent CPL features. In addition, this system has a good extensibility as the CPL property can be effectively regulated by changing the kind of emissive QDs. More importantly, this water-based nano-composite with facile fabrication process (one-step mixing) is suitable for the real applications, which is undoubtedly beneficial for the further progress of functional CPL materials.
Collapse
Affiliation(s)
- Yuqi Xiao
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Yang Yu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, P. R. China
| | - Quan Nie
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Qi
- Institute of Biomedical Engineering, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
5
|
Dong M, Zhang Y, Zhu J, Zhu X, Zhao J, Zhao Q, Sun L, Sun Y, Yang F, Hu W. All-in-One 2D Molecular Crystal Optoelectronic Synapse for Polarization-Sensitive Neuromorphic Visual System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409550. [PMID: 39188186 DOI: 10.1002/adma.202409550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Neuromorphic visual systems (NVSs) hold the potential to not only preserve but also enhance human visual capabilities. One such augmentation lies in harnessing polarization information from light reflected or scattered off surfaces like bees, which can disclose unique characteristics imperceptible to the human eyes. While creating polarization-sensitive optoelectronic synapses presents an intriguing avenue for equipping NVS with this capability, integrating functions like polarization sensitivity, photodetection, and synaptic operations into a singular device has proven challenging. This integration typically necessitates distinct functional components for each performance metric, leading to intricate fabrication processes and constraining overall performance. Herein, a pioneering linear polarized light sensitive synaptic organic phototransistor (OPT) based on 2D molecular crystals (2DMCs) with highly integrated, all-in-one functionality, is demonstrated. By leveraging the superior crystallinity and molecular thinness of 2DMC, the synaptic OPT exhibits comprehensive superior performance, including a linear dichroic ratio up to 3.85, a high responsivity of 1.47 × 104 A W-1, and the adept emulation of biological synapse functions. A sophisticated application in noncontact fingerprint detection achieves a 99.8% recognition accuracy, further highlights its potential. The all-in-one 2DMC optoelectronic synapse for polarization-sensitive NVS marks a new era for intelligent perception systems.
Collapse
Affiliation(s)
- Meiqiu Dong
- Ji Hua Laboratory, Foshan, Guangdong, 52800, P. R. China
| | - Yu Zhang
- Ji Hua Laboratory, Foshan, Guangdong, 52800, P. R. China
| | - Jie Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoting Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinjin Zhao
- Department of Physics, Shanxi Datong University, Datong, 037009, China
| | - Qiang Zhao
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Lingjie Sun
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yajing Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fangxu Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
He WM, Zha J, Zhou Z, Cui YJ, Luo P, Ma L, Tan C, Zang SQ. Atomically Precise Chiral Metal Nanoclusters for Circularly Polarized Light Detection. Angew Chem Int Ed Engl 2024; 63:e202407887. [PMID: 38802322 DOI: 10.1002/anie.202407887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Circularly polarized light (CPL) detection is of great significance in various applications such as drug identification, sensing and imaging. Atomically precise chiral metal nanoclusters with intense circular dichroism (CD) signals are promising candidates for CPL detection, which can further facilitate device miniaturization and integration. Herein, we report the preparation of a pair of optically active chiral silver nanoclusters [Ag7(R/S-DMA)2(dpppy)3] (BF4)3 (R/S-Ag7) for direct CPL detection. The crystal structure and molecular formula of R/S-Ag7 clusters are confirmed by single-crystal X-ray diffraction and high-resolution mass spectrometry. R/S-Ag7 clusters exhibit strong CD spectra and CPL both in solution and solid states. When used as the photoactive materials in photodetectors, R/S-Ag7 enables effective discrimination between left-handed circularly polarized and right-handed circularly polarized light at 520 nm with short response time, high responsivity and considerable discrimination ratio. This study is the first report on using atomically precise chiral metal nanoclusters for CPL detection.
Collapse
Affiliation(s)
- Wei-Miao He
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiajia Zha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077, P. R. China
| | - Zhan Zhou
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yu-Jia Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Zhang G, Bao Y, Ma H, Wang N, Cheng X, He Z, Wang X, Miao T, Zhang W. Precise Modulation of Circularly Polarized Luminescence via Polymer Chiral Co-assembly and Contactless Dynamic Chiral Communication. Angew Chem Int Ed Engl 2024; 63:e202401077. [PMID: 38456382 DOI: 10.1002/anie.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.
Collapse
Affiliation(s)
- Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
8
|
Dai X, Yu Y, Ye T, Deng J, Bu Y, Shi M, Wang R, Zhou J, Sun L, Chen X, Shen X. Dynamically Reconfigurable on-Chip Polarimeters Based on Nanoantenna Enabled Polarization Dependent Optoelectronic Computing. NANO LETTERS 2024; 24:983-992. [PMID: 38206182 DOI: 10.1021/acs.nanolett.3c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
On-chip polarization detectors have attracted extensive research interest due to their filterless and ultracompact architecture. However, their polarization-dependent photoresponses cannot be dynamically adjusted, hindering the development toward intelligence. Here, we propose dynamically reconfigurable polarimetry based on in-sensor differentiation of two self-powered photoresponses with orthogonal polarization dependences and tunable responsivities. Such a device can be electrostatically configured in an ultrahigh polarization extinction ratio (PER) mode, where the PER tends to infinity, a Stokes parameter direct sensing mode, where the photoresponse is proportional to S1 or S2 with high accuracy (RMSES1 = 1.5%, RMSES2 = 2.0%), or a background suppressing mode, where the target-background polarization contrast is singularly enhanced. Moreover, the device achieves a polarization angle sensitivity of 0.51 mA·W-1·degree-1 and a specific polarization angle detectivity of 2.8 × 105 cm·Hz1/2·W·degree-1. This scheme is demonstrated throughout the near-to-long-wavelength infrared range, and it will bring a leap for next-generation on-chip polarimeters.
Collapse
Affiliation(s)
- Xu Dai
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yu Yu
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Ye
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jie Deng
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yonghao Bu
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mengdie Shi
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ruowen Wang
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xuechu Shen
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Wen X, Du S, Zhang L, Liu M. Chiral Deep Eutectic Solvents Enable Full-Color and White Circularly Polarized Luminescence from Achiral Luminophores. Angew Chem Int Ed Engl 2023; 62:e202311816. [PMID: 37743623 DOI: 10.1002/anie.202311816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Herein, chiral deep eutectic solvents (DES) are prepared by lauric acid as hydrogen bond donors (HBD) and chiral menthol as hydrogen bond acceptors (HBA). When achiral fluorescent molecules are dopedin the menthol-based chiral DES, they emit circularly polarized luminescence (CPL) with handedness controlled by the molecular chirality (l or d) of menthol. Remarkably, the strategy is universal and a series of achiral fluorescent molecules can be endowed with CPL activity, showing a full-color and white CPL upon appropriate mixing, which paves the way to prepare white CPL materials. Interestingly, CPL appears only in a certain temperature range in the DES. Variable-temperature spectra and other characterization methods reveal that the H-bond network in the chiral DES plays an important role in inducing CPL. This work unveils how the interior structure as well as the hydrogen-bond network of a chiral DES can transfer its chirality to achiral luminophores for the first time and realizes a full-color and white CPL in a DES.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Shi Y, Han J, Li C, Zhao T, Jin X, Duan P. Recyclable soft photonic crystal film with overall improved circularly polarized luminescence. Nat Commun 2023; 14:6123. [PMID: 37777553 PMCID: PMC10542380 DOI: 10.1038/s41467-023-41884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Existing circularly polarized luminescence materials can hardly satisfy the requirements of both large luminescence dissymmetry factor and high luminescent quantum yield, which hinders their practical applications. Here, we present a soft photonic crystal film embedded with chiral nanopores that possesses excellent circularly polarized luminescence performance with a high luminescence dissymmetry factor as well as a large luminescent quantum yield when loaded with various luminescent dyes. Benefitting from the retention of chiral nanopores imprinted from a chiral liquid crystal arrangement, the chiral soft photonic crystal film can not only endow dyes with chiral properties, but also effectively avoid severe aggregation of guest dye molecules. More importantly, the soft photonic crystal film can be recycled many times by loading and eluting guest dye molecules while retaining good stability as well as circularly polarized luminescence performance, enabling various applications, including smart windows, multi-color circularly polarized luminescence and anticounterfeiting.
Collapse
Affiliation(s)
- Yonghong Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
| | - Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
11
|
Hu R, Lu X, Hao X, Qin W. An Organic Chiroptical Detector Favoring Circularly Polarized Light Detection from Near-Infrared to Ultraviolet and Magnetic-Field-Amplifying Dissymmetry in Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211935. [PMID: 36916071 DOI: 10.1002/adma.202211935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Circularly polarized light detection has attracted growing attention because of its unique application in security surveillance and quantum optics. Here, through designing a chiral polymer as a donor, a high-performance circularly polarized light detector is fabricated, successfully enabling detection from ultraviolet (300 nm) to near-infrared (1100 nm). The chiroptical detector presents an excellent ability to distinguish right-handed and left-handed circularly polarized light, where dissymmetries in detectivity, responsivity, and electric current are obtained and then optimized. The dissymmetry in electric current can be increased from 0.18 to 0.23 once an external magnetic field is applied. This is a very rare report on the dissymmetry tunability by an external field in chiroptical detectors. Moreover, the chirality-generated orbital angular momentum is one of the key factors determining the performance of the circularly polarized light detection. Overall, the organic chiroptical detector presents excellent stability in detection, which provides great potential for future flexible and compact integrated platforms.
Collapse
Affiliation(s)
- Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
12
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
13
|
Huang J, Yang X, Zhou J, Xie H, Duan P. Air-tolerant upconverted circularly polarized luminescence enabled by confined space of chiral micelle. Chirality 2023; 35:346-354. [PMID: 36792058 DOI: 10.1002/chir.23547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Circularly polarized luminescence (CPL) has been widely demonstrated that the circular polarization in excited state can be significantly amplified through the triplet-triplet annihilation-based upconversion (TTA-UC) luminescence process in various chiral nano-assemblies. However, constructing such an upconverted circularly polarized luminescence (UC-CPL) system in the aqueous phase remains a challenge. In this work, a kind of amphiphilic chiral cationic gemini surfactant is utilized to construct chiral spherical micelle in the aqueous phase, whose internal chiral cavity can provide a hydrophobic and deoxygenated environment for air-sensitive TTA-UC system. In addition, due to the co-assembly process between the emitters and chiral micelles, achiral emitters of upconversion pairs exhibit induced chiroptical properties. More importantly, the luminescence dissymmetry factor (glum ) can be amplified by one order of magnitude through TTA-UC process. This work provides an effective and useful strategy for realizing UC-CPL in aqueous phase.
Collapse
Affiliation(s)
- Jiang Huang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Jin Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Helou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|