1
|
Fu L, Yong JM, Yeh R, Bartlett F, Whitelock JM, Lord MS. Functionalized Cerium Oxide Nanoparticles Enhance Penetration into Melanoma Spheroids In Vivo through Angiogenesis. Adv Healthc Mater 2025:e2405129. [PMID: 40109098 DOI: 10.1002/adhm.202405129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Angiogenesis is a crucial step in tumor progression, including melanoma, making anti-angiogenic strategies a widely explored treatment approach. However, both innate and acquired resistance to these therapies suggest that this approach may need re-evaluation. Nanoparticles have gained attention for their potential to enhance drug delivery and retention within tumors via the bloodstream. However, the in vitro screening of nanoparticles is limited by the inability of preclinical models to replicate the complex tumor microenvironment, especially the blood supply. Here, it is demonstrated that melanoma cells embedded in Matrigel spheroids can engraft in and be vascularized by the chorioallantoic membrane (CAM) of fertilized chicken eggs. This model allows for the assessment of nanoparticle toxicity and accumulation in tumor spheroids, as well as functional effects such as angiogenesis. Cerium oxide nanoparticles (nanoceria) and their surface functionalized derivatives are widely explored for biomedical applications due to their ability to modulate oxidative stress and angiogenesis. Here, it is observed that heparin functionalized nanoceria penetrate melanoma spheroids in the CAM and promote spheroid vascularization to a greater extent than nanoceria alone. This study aids in the development of preclinical cancer models for nanoparticle screening and provides new insight into the interplay between nanoparticle surface coatings and biological effects.
Collapse
Affiliation(s)
- Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joel M Yong
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robyn Yeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Florence Bartlett
- Katherina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Burggren W, Dzialowski E, Tzschentke B. The avian embryo as a time-honoured animal model in developmental, biomedical and agricultural research. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230438. [PMID: 40010394 DOI: 10.1098/rstb.2023.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 02/28/2025] Open
Abstract
Avian embryos have been at the core of embryological, morphological, physiological and biochemical/molecular research, especially involving research in three primary areas: developmental, biomedical and agricultural research. As developmental models, the avian embryo-especially that of the chicken-has been the single most used embryo model, perhaps in part from the combination of large size, ease of access and prior knowledge base. Developmental research with avian embryos has included organ system studies of the heart, vasculature, lungs, kidneys, nervous system, etc., as well as integrated physiological processes including gas-exchange, acid-base and ion/water regulation. In terms of translational research, avian embryos have modelled vascular development, based on the easily accessible chorioallantoic membrane under the eggshell. This same respiratory organ has enabled toxicological studies of how pollutants affect vertebrate development. Investigation of the transition to pulmonary breathing and the associated emergence of respiratory control has also relied heavily upon the avian embryo. In addition to developmental and biomedical investigations, the avian embryo has been studied intensively due to the huge importance of domesticated birds as a food source. Consequently, the effects of environment (including temperature, humidity, noise levels and photoperiod) during incubation on subsequent post-hatch phenotype are being actively investigated.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Edward Dzialowski
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Barbara Tzschentke
- Institute for Agricultural and Urban Ecological Projects (IASP) at Humboldt-Universität zu Berlin, Berlin 10115, Germany
| |
Collapse
|
3
|
Huang Z, Tian K, Xue Y, Luo F. A promising role of noble metal NPs@MOFs in chondrosarcoma management. NANOSCALE 2025; 17:2961-2984. [PMID: 39718125 DOI: 10.1039/d4nr03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis. Despite promising in vitro and in vivo results, challenges such as understanding the mechanisms of action and clinical translation remain, and the therapeutic effect of PTT and PDT on deep chondrosarcoma seems unsatisfactory. Future exploration, such as combined therapy and multiple MOF therapy, could unlock the full potential of noble metal NPs@MOFs in revolutionizing chondrosarcoma management, offering insights into the prospect of these materials in chondrosarcoma management.
Collapse
Affiliation(s)
- Ziheng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
4
|
Kampaengsri S, Yong GY, Aryamueang S, Ouengwanarat B, Pewklang T, Chansaenpak K, Jitrapakdee S, Kue CS, Kamkaew A. Heptamethine cyanine-based polymeric nanoparticles for photothermal therapy in HCT116 human colon cancer model. Sci Rep 2025; 15:884. [PMID: 39762372 PMCID: PMC11704253 DOI: 10.1038/s41598-024-83249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability. TEM showed that QuCy7@mPEG NPs possess a spherical morphology, featuring a core-shell structure with a size of around 120 nm in diameter. Upon irradiation with an 808 nm laser for 10 min, a significant increase in temperature up to 24 °C can be achieved with a photothermal conversion (PTC) rate of approximately 35%. QuCy7@mPEG NPs exhibit remarkable photothermal stability as compared to QuCy7. The efficiency of QuCy7@mPEG NPs was demonstrated by the in vitro PTT studies. Finally, the nanoparticles' acute toxicity and effectiveness were assessed using the chick embryo model. The results provide compelling evidence that QuCy7@mPEG NPs are safe without inducing hemolysis, inhibit angiogenesis when exposed to light, and exhibit anti-tumor activity with a 76% reduction in tumor size compared to QuCy7 (40%). Thus suggesting the sulfonate groups can enhance water solubility, and its nanopolymer is biocompatible and possesses superior anti-tumor efficacy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Gong Yi Yong
- School of Graduate Studies, Management and Science University, Seksyen 13, Shah Alam, 40100, Selangor, Malaysia
| | - Sirimongkon Aryamueang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Bongkot Ouengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chin-Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
5
|
Sarnella A, Ferrara Y, Terlizzi C, Albanese S, Monti S, Licenziato L, Mancini M. The Chicken Embryo: An Old but Promising Model for In Vivo Preclinical Research. Biomedicines 2024; 12:2835. [PMID: 39767740 PMCID: PMC11673736 DOI: 10.3390/biomedicines12122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The chicken embryo has emerged as a valuable model for preclinical studies due to its unique combination of accessibility, affordability, and relevance to human biology. Its rapid development, external growth environment, and clear structural visibility offer distinct advantages over traditional mammalian models. These features facilitate the study of real-time biological processes, including tissue development, tumor growth, angiogenesis, and drug delivery, using various imaging modalities, such as optical imaging, magnetic resonance imaging, positron emission tomography, computed tomography, and ultrasound. The chicken embryo model also minimizes ethical concerns compared to mammalian models, as it allows for early-stage research without the complexity of a fully developed animal. Moreover, its ability to integrate human tumor cells into xenograft models provides a reliable platform for cancer research, enabling high-throughput screening of therapeutic interventions and tracking molecular dynamics in vivo. Advances in molecular imaging techniques further enhance the resolution and depth of data obtained from these studies, offering insights into cellular and molecular mechanisms underlying disease. Given its versatility, cost-effectiveness, and translational potential, the chicken embryo represents a promising tool for advancing preclinical research, particularly in drug development, cancer biology, and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Cristina Terlizzi
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (A.S.); (Y.F.); (S.A.); (S.M.); (L.L.); (M.M.)
| | | | | | | | | |
Collapse
|
6
|
Rzhepakovsky I, Piskov S, Avanesyan S, Shakhbanov M, Sizonenko M, Timchenko L, Nagdalian A, Shariati MA, Al-Farga A, Aqlan F, Likhovid A. Expanding understanding of chick embryo's nervous system development at HH22-HH41 embryonic stages using X-ray microcomputed tomography. PLoS One 2024; 19:e0310426. [PMID: 39546468 PMCID: PMC11567531 DOI: 10.1371/journal.pone.0310426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 11/17/2024] Open
Abstract
Assessing the embryotoxicity and teratogenicity of various substances and processes is crucial due to their complexity and resource intensity. The chicken embryo (CE) serves an ideal model for simulating the first months of mammalian embryonic development. This makes the CE a reliable model for testing teratogenic effects, particularly in relation to the nervous system (NS), which experiences developmental abnormalities second in frequency only to cardiovascular teratogenic disorders. Microcomputed tomography (μCT) is a promising method for studying these processes. The advantages of μCT include relatively high research speed, diagnostic accuracy, high resolution and the ability to visualize the entire internal 3D structure of an object while preserving for other types of research. At the same time, there are practically no available databases of normative μCT data, both qualitative and quantitative, which would act as a starting point for screening detection of abnormalities in the development of the NS. In this study, we present a simple method for obtaining very detailed quantitative sets of 2D and 3D μCT data of NS structures of the CE (Gallus Gallus domesticus) at HH22-HH41 embryonic stages with contrasting by 1% phosphotungstic acid. The results of μCT demonstrate the exact boundaries, high general and differentiated contrast of the main and specific structures of the NS of CE, which are quantitatively and qualitatively similar to results of histological analysis. Calculations of the X-ray density and volume of the main structures of the NS at constant exponential growth are presented. In addition to the increase in linear dimensions, significant changes in the structures of various parts of the brain were identified and visualized during the CE development at HH22 to HH41 embryonic stages. The data presented establish the first methodology for obtaining normative data, including subtle localized differences in the NS in CE embryogenesis. The data obtained open up new opportunities for modern embryology, teratology, pharmacology and toxicology.
Collapse
Affiliation(s)
| | - Sergey Piskov
- North-Caucasus Federal University, Stavropol, Russia
| | | | | | | | | | | | - Mohammad Ali Shariati
- Semey Branch of Kazakh Research Institute of Processingand Food Industry, Almaty, Kazakhstan
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| | | |
Collapse
|
7
|
Song C, Xiong DD, He RQ, Yong XZ, Huang ZG, Dang YW, Chen G, Pang YY, Zhao CY, Qu N, Wei DM. Bibliometric study of the application of the chicken embryo chorioallantoic membrane model in cancer research: the top 100 most cited articles. J Comp Pathol 2024; 213:59-72. [PMID: 39116802 DOI: 10.1016/j.jcpa.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The chicken embryo chorioallantoic membrane (CAM) model has played a crucial role in various aspects of cancer research. The purpose of this study is to help researchers clarify the research direction and prospects of the CAM model. A bibliometric analysis was conducted on the top 100 most cited articles on use of the CAM model in tumour research, retrieved from the Web of Science Core Collection database. Tools such as Bibliometrix, VOSviewer, CiteSpace and Excel were utilized for the visualization network analysis. The 100 articles analysed were mainly from the USA, China and European countries such as Germany and France. Tumour research involving CAM model experiments demonstrated reliability and scientific rigor (average citation count = 156.2). The analysis of keywords, topics and subject areas revealed that the applications of this model ranged from the biological characteristics of tumours to molecular mechanisms and signaling pathways, to recent developments in nanotechnology and clinical applications. Additionally, nude mouse experiments have been more frequently performed in recent years. We conclude that the CAM model is efficient, simple and cost-effective, and has irreplaceable value in various aspects of cancer research. In the future, the CAM model can further contribute to nanotechnology research.
Collapse
Affiliation(s)
- Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiang-Zhi Yong
- Department of Periodontal and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Chun-Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ning Qu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
8
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Shukla AK, Yoon S, Oh SO, Lee D, Ahn M, Kim BS. Advancement in Cancer Vasculogenesis Modeling through 3D Bioprinting Technology. Biomimetics (Basel) 2024; 9:306. [PMID: 38786516 PMCID: PMC11118135 DOI: 10.3390/biomimetics9050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
10
|
Wang M, Chen S, Cheng S, Nederstigt TAP, Poelmann RE, DeRuiter MC, Lamers GEM, Willemse JJ, Mascitelli C, Vijver MG, Richardson MK. The biodistribution of polystyrene nanoparticles administered intravenously in the chicken embryo. ENVIRONMENT INTERNATIONAL 2024; 188:108723. [PMID: 38744045 DOI: 10.1016/j.envint.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nanoplastics can cause severe malformations in chicken embryos. To improve our understanding of the toxicity of nanoplastics to embryos, we have studied their biodistribution in living chicken embryos. We injected the embryos in the vitelline vein at stages 18-19. We injected polystyrene nanoparticles (PS-NPs) tagged with europium- or fluorescence. Their biodistribution was tracked using inductively-coupled plasma mass spectrometry on tissue lysates, paraffin histology, and vibratome sections analysed by machine learning algorithms. PS-NPs were found at high levels in the heart, liver and kidneys. Furthermore, PS-NPs crossed the endocardium of the heart at sites of epithelial-mesenchymal transformation; they also crossed the liver endothelium. Finally, we detected PS-NPs in the allantoic fluid, consistent with their being excreted by the kidneys. Our study shows the power of the chicken embryo model for analysing the biodistribution of nanoplastics in embryos. Such experiments are difficult or impossible in mammalian embryos. These findings are a major advance in our understanding of the biodistribution and tissue-specific accumulation of PS-NPs in developing animals.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Shuhao Chen
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Tom A P Nederstigt
- Centrum voor Milieuwetenschappen Leiden (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, LUMC Onderzoeksgebouw, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Joost J Willemse
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Chiara Mascitelli
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Martina G Vijver
- Centrum voor Milieuwetenschappen Leiden (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
11
|
Javed S, Soukhtehzari S, Salmond N, Fernandes N, Williams KC. Development of an in vivo system to model breast cancer metastatic organotropism and evaluate treatment response using the chick embryo. iScience 2023; 26:106305. [PMID: 36950119 PMCID: PMC10025954 DOI: 10.1016/j.isci.2023.106305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metastatic lesions produced through the process of systemic tumor cell dissemination and growth at distant sites are challenging to treat and the primary cause of patient mortality. Developing in vivo models of metastasis with utility in evaluating molecular targets and therapeutics in a timely manner would expedite the path to therapeutic discovery. Here, we evaluated breast cancer metastasis and metastatic organotropism using the chick embryo. We developed a method to evaluate metastasis using the MDA231 cell line. Then, using cell lines with demonstrated tropism for the bone, brain, and lung, we evaluated organotropism. Rapid and robust organ-specific metastasis was modeled in the chick embryo and, importantly, recapitulated metastatic organotropism congruent to what has been demonstrated in mice. Treatment response in the metastatic setting was also evaluated and quantified. This work establishes the chick embryo as a model for studies aimed at understanding organotropism and therapeutic response in the metastatic setting.
Collapse
Affiliation(s)
- Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Sepideh Soukhtehzari
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Nikki Salmond
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Nazarine Fernandes
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
- Corresponding author
| |
Collapse
|
12
|
Wang M, Rücklin M, Poelmann RE, de Mooij CL, Fokkema M, Lamers GEM, de Bakker MAG, Chin E, Bakos LJ, Marone F, Wisse BJ, de Ruiter MC, Cheng S, Nurhidayat L, Vijver MG, Richardson MK. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells. ENVIRONMENT INTERNATIONAL 2023; 173:107865. [PMID: 36907039 DOI: 10.1016/j.envint.2023.107865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Martin Rücklin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Carmen L de Mooij
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marjolein Fokkema
- Institute of Psychology, Methodology and Statistics, Pieter de la Court Building, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ernest Chin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lilla J Bakos
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Photon Science Department, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Bert J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Marco C de Ruiter
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Luthfi Nurhidayat
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|