1
|
Yang H, Zhang L, Kang X, Si Y, Song P, Su X. Reaction Pathway Differentiation Enabled Fingerprinting Signal for Single Nucleotide Variant Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412680. [PMID: 39903775 PMCID: PMC11948007 DOI: 10.1002/advs.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Accurate identification of single-nucleotide variants (SNVs) is paramount for disease diagnosis. Despite the facile design of DNA hybridization probes, their limited specificity poses challenges in clinical applications. Here, a differential reaction pathway probe (DRPP) based on a dynamic DNA reaction network is presented. DRPP leverages differences in reaction intermediate concentrations between SNV and WT groups, directing them into distinct reaction pathways. This generates a strong pulse-like signal for SNV and a weak unidirectional increase signal for wild-type (WT). Through the application of machine learning to fluorescence kinetic data analysis, the classification of SNV and WT signals is automated with an accuracy of 99.6%, significantly exceeding the 80.7% accuracy of conventional methods. Additionally, sensitivity for variant allele frequency (VAF) is enhanced down to 0.1%, representing a ten-fold improvement over conventional approaches. DRPP accurately identified D614G and N501Y SNVs in the S gene of SARS-CoV-2 variants in patient swab samples with accuracy over 99% (n = 82). It determined the VAF of ovarian cancer-related mutations KRAS-G12R, NRAS-G12C, and BRAF-V600E in both tissue and blood samples (n = 77), discriminating cancer patients and healthy individuals with significant difference (p < 0.001). The potential integration of DRPP into clinical diagnostics, along with rapid amplification techniques, holds promise for early disease diagnostics and personalized diagnostics.
Collapse
Affiliation(s)
- Huixiao Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Linghao Zhang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xinmiao Kang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yunpei Si
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Ping Song
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xin Su
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100191China
| |
Collapse
|
2
|
Wang L, Wang Z, Luo W, Zhao H, Xie G. Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo. ACS APPLIED BIO MATERIALS 2024; 7:8599-8607. [PMID: 39630428 DOI: 10.1021/acsabm.4c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Living systems have some of the most sophisticated reaction circuits in the world, realizing many incredibly complex functions through a variety of simple molecular reactions, in which the most notable feature that distinguishes them from artificial molecular reaction networks is the precise control of reaction times and programmable expression. Here, we exploit the hydrolysis-directed nature of λ exonuclease and the programmed responses of the dynamic nanotechnology of nucleic acids to construct a simple, complete, and powerful set of temporally programmed circuits. This system can arbitrarily regulate the degradation rate of the blocker, thereby delaying the nucleic acid chain substitution reaction with less signal leakage. In addition, the powerful dynamic reaction network of nucleic acids enabled us to control the programmed execution of a wide range of reactions in different fields. We have developed a simple strategy to introduce precise control of the time dimension into nucleic acid reaction circuits, which greatly enriches the functionality and applicability of the reaction programs, which can be easily used as timers, compilers, converters, etc. The simplicity, precision, stability, and versatility of such dynamic temporal programming circuits greatly expand the potential of artificial molecular reaction networks for more complex practical applications in biochemistry and molecular biology.
Collapse
Affiliation(s)
- Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Heping Zhao
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
3
|
Liu J, Zhou Z, Bo Y, Yan Q, Su X. Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for In Situ Imaging of Metabolically Labeled Cell Membrane Glycoproteins. NANO LETTERS 2024; 24:14236-14243. [PMID: 39470128 DOI: 10.1021/acs.nanolett.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for in situ imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 μM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyan Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Bo
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Hu M, Yang M, Cheng X, Wu T. Time-Controlled Authentication Strategies for Molecular Information Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400261. [PMID: 38676342 DOI: 10.1002/smll.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Modern cryptography based on computational complexity theory is mainly constructed with silicon-based circuits. As DNA nanotechnology penetrates the molecular domain, utilizing molecular cryptography for data access protection in the biomolecular domain becomes a unique approach to information security. However, building security devices and strategies with robust security and compatibility is still challenging. Here, this study reports a time-controlled molecular authentication strategy using DNAzyme and DNA strand displacement as the basic framework. A time limit exists for authorization and access, and this spontaneous shutdown design further protects secure access. Multiple hierarchical authentications, temporal Boolean logic authentication, and enzyme authentication strategies are constructed based on DNA networks'good compatibility and programmability. This study gives proof of concept for the detection and protection of bioinformation about single nucleotide variants and miRNA, highlighting their potential in biosensing and security protection.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengyao Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianzhi Cheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Rong Q, Deng Y, Chen F, Yin Z, Hu L, Su X, Zhou D. Polymerase-Based Signal Delay for Temporally Regulating DNA Involved Reactions, Programming Dynamic Molecular Systems, and Biomimetic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400142. [PMID: 38676334 DOI: 10.1002/smll.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.
Collapse
Affiliation(s)
- Qinze Rong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingnan Deng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing, 100013, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
6
|
Cui S, Liu X, Zhang X, Shi P, Zheng Y, Wang B, Zhang Q. Engineering Modular DNA Reaction Networks for Signal Processing. Chemistry 2024; 30:e202400740. [PMID: 38623910 DOI: 10.1002/chem.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Diversified molecular information-processing methods have significant implications for nanoscale manipulation and control, monitoring and disease diagnosis of organisms, and direct intervention in biological activities. However, as an effective approach for implementing multifunctional molecular information processing, DNA reaction networks (DRNs) with numerous functionally specialized molecular structures have challenged them on scale design, leading to increased network complexity, further causing problems such as signal leakage, attenuation, and cross-talk in network reactions. Our study developed a strategy for performing various signal-processing tasks through engineering modular DRNs. This strategy is based on a universal core unit with signal selection capability, and a time-adjustable signal self-resetting module is achieved by combing the core unit and self-resetting unit, which improves the time controllability of modular DRNs. In addition, multi-input and -output signal cross-catalytic and continuously adjustable signal delay modules were realized by combining core and threshold units, providing a flexible, precise method for modular DRNs to process the signal. The strategy simplifies the design of DRNs, helps generate design ideas for large-scale integrated DRNs with multiple functions, and provides prospects in biocomputing, gene regulation, and biosensing.
Collapse
Affiliation(s)
- Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Wang
- School of Software Engineering, Dalian University, Dalian, 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Wu Y, Liang R, Chen W, Wang C, Xing D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024; 270:125622. [PMID: 38215586 DOI: 10.1016/j.talanta.2024.125622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Alkaline phosphatase (ALP) is a zinc-containing metalloprotein that shows very great significance in clinical diagnosis, which can catalyze the hydrolysis of phosphorylated species. ALP has the potential to serve as a valuable biomarker for detecting liver dysfunction and bone diseases. On the other hand, ALP is an efficient biocatalyst to amplify detection signals in the enzyme-linked assay. It has always been a major research focus to develop novel biosensors that can detect ALP activity with high selectivity and sensitivity. There have been numerous reports on the development of biosensors to determine ALP activity using a phosphorylated DNA probe. Among them, various beneficial strategies, such as λ exonuclease-mediated cleavage reaction, terminal deoxynucleotidyl transferase-triggered DNA polymerization, and Klenow fragment polymerase-catalyzed elongation, are employed to generate amplified and more intuitive signal. This review discusses and summarizes the development and advances of biosensors for ALP activity detection that use a well-designed phosphorylated DNA probe, aiming to provide some guidelines for the design of more sophisticated sensing strategies that exhibit improved sensitivity, selectivity, and adaptability in detecting ALP activity.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Liu X, Zhang X, Cui S, Xu S, Liu R, Wang B, Wei X, Zhang Q. A signal transmission strategy driven by gap-regulated exonuclease hydrolysis for hierarchical molecular networks. Commun Biol 2024; 7:335. [PMID: 38493265 PMCID: PMC10944543 DOI: 10.1038/s42003-024-06036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Exonucleases serve as efficient tools for signal processing and play an important role in biochemical reactions. Here, we identify the mechanism of cooperative exonuclease hydrolysis, offering a method to regulate the cooperative hydrolysis driven by exonucleases through the modulation of the number of bases in gap region. A signal transmission strategy capable of producing amplified orthogonal DNA signal is proposed to resolve the polarity of signals and byproducts, which provides a solution to overcome the signal attenuation. The gap-regulated mechanism combined with DNA strand displacement (DSD) reduces the unpredictable secondary structures, allowing for the coexistence of similar structures in hierarchical molecular networks. For the application of the strategy, a molecular computing model is constructed to solve the maximum weight clique problems (MWCP). This work enhances for our knowledge of these important enzymes and promises application prospects in molecular computing, signal detection, and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shujuan Xu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
9
|
Yang J, Zhang T, Zhang L, Su X. A non-equilibrium dissipation system with tunable molecular fuel flux. NANOSCALE 2024; 16:4219-4228. [PMID: 38334944 DOI: 10.1039/d3nr06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cells convert macromolecule fuel into small molecule fuel through energy pathways, including glycolysis, the citric acid cycle, and oxidative phosphorylation. These processes drive vital dissipative networks or structures. Distinct from direct fuel (DF) utilization (directly acquire and utilize small molecule fuel), this macromolecule fuel mechanism is referred to as indirect fuel (IF) utilization, wherein the generation rate of small molecule fuel (fuel flux) can be effectively regulated. Here, we reported a bionic dissipation system with tunable fuel flux based on dynamic DNA nanotechnology. By regulating the rates of strand displacement and enzymatic reactions, we controlled the fuel flux and further tuned the strength of non-equilibrium transient states. Interestingly, we found that within a certain range, the fuel flux was positively correlated with the strength of the transient state. Once saturation was reached, it became negatively correlated. An appropriate fuel flux supports the maintenance of high-intensity non-equilibrium transients. Furthermore, we harnessed the dissipation system with tunable molecular fuel flux to regulate the dynamic assembly and disassembly of AuNPs. Different fuel fluxes resulted in varying assembly and disassembly rates and strengths for AuNPs, accomplishing a biomimetic process of regulating microtubule assembly through the control of fuel flux within living organisms. This work demonstrated a dissipation system with tunable molecular fuel flux, and we envision that this system holds significant potential for development in various fields such as biomimetics, synthetic biology, smart materials, biosensing, and artificial cells.
Collapse
Affiliation(s)
- Jiayu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tengfang Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Hu M, Li X, Wu JN, Yang M, Wu T. DNAzyme-Based Dissipative DNA Strand Displacement for Constructing Temporal Logic Gates. ACS NANO 2024; 18:2184-2194. [PMID: 38193385 DOI: 10.1021/acsnano.3c09506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Toehold-mediated DNA strand displacement is the foundation of dynamic DNA nanotechnology, encompassing a wide range of tools with diverse functions, dynamics, and thermodynamic properties. However, a majority of these tools are limited to unidirectional reactions driven by thermodynamics. In response to the growing field of dissipative DNA nanotechnology, we present an approach: DNAzyme-based dissipative DNA strand displacement (D-DSD), which combines the principles of dynamic DNA nanotechnology and dissipative DNA nanotechnology. D-DSD introduces circular and dissipative characteristics, distinguishing it from the unidirectional reactions observed in conventional strand displacement. We investigated the reaction mechanism of D-DSD and devised temporal control elements. By substituting temporal components, we designed two distinct temporal AND gates using fewer than 10 strands, eliminating the need for complex network designs. In contrast to previous temporal logic gates, our temporal storage is not through dynamics control or cross-inhibition but through autoregressive storage, a more modular and scalable approach to memory storage. D-DSD preserves the fundamental structure of toehold-mediated strand displacement, while offering enhanced simplicity and versatility.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaolong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Ni Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengyao Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
11
|
Sharma C, Samanta A, Schmidt RS, Walther A. DNA-Based Signaling Networks for Transient Colloidal Co-Assemblies. J Am Chem Soc 2023; 145:17819-17830. [PMID: 37543962 DOI: 10.1021/jacs.3c04807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Programmable chemical circuits inspired by signaling networks in living cells are a promising approach for the development of adaptive and autonomous self-assembling molecular systems and material functions. Progress has been made at the molecular level, but connecting molecular control circuits to self-assembling larger elements such as colloids that enable real-space studies and access to functional materials is sparse and can suffer from kinetic traps, flocculation, or difficult system integration protocols. Herein, we report a toehold-mediated DNA strand displacement reaction network capable of autonomously directing two different microgels into transient and self-regulating co-assemblies. The microgels are functionalized with DNA and become elemental components of the network. The flexibility of the circuit design allows the installation of delay phases or accelerators by chaining additional circuit modules upstream or downstream of the core circuit. The design provides an adaptable and robust route to regulate other building blocks for advanced biomimetic functions.
Collapse
Affiliation(s)
- Charu Sharma
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ricarda Sophia Schmidt
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
12
|
Zhang X, Liu X, Yao Y, Liu Y, Zeng C, Zhang Q. Programmable Molecular Signal Transmission Architecture and Reactant Regeneration Strategy Driven by EXO λ for DNA Circuits. ACS Synth Biol 2023; 12:2107-2117. [PMID: 37405388 DOI: 10.1021/acssynbio.3c00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The characteristics of DNA hybridization enable molecular computing through strand displacement reactions, facilitating the construction of complex DNA circuits, which is an important way to realize information interaction and processing at a molecular level. However, signal attenuation in the cascade and shunt process hinders the reliability of the calculation results and further expansion of the DNA circuit scale. Here, we demonstrate a novel programmable exonuclease-assisted signal transmission architecture, where DNA strand with toehold employed to inhibit the hydrolysis process of EXO λ is applied in DNA circuits. We construct a series circuit with variable resistance and a parallel circuit with constant current source, ensuring excellent orthogonal properties between input and output sequences while maintaining low leakage (<5%) during the reaction. Additionally, a simple and flexible exonuclease-driven reactant regeneration (EDRR) strategy is proposed and applied to construct parallel circuits with constant voltage sources that could amplify the output signal without extra DNA fuel strands or energy. Furthermore, we demonstrate the effectiveness of the EDRR strategy in reducing signal attenuation during cascade and shunt processes by constructing a four-node DNA circuit. These findings offer a new approach to enhance the reliability of molecular computing systems and expand the scale of DNA circuits in the future.
Collapse
Affiliation(s)
- Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Zhao T, Wang Z, Yang Y, Liu K, Wang X. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37402443 DOI: 10.1021/acsami.3c06995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Nonequilibrium assembling systems developed so far have relied on chemical fuels to drive the programmable pH cycles, redox reactions, and metastable bond formations. However, these methods often result in the unwanted accumulation of chemical waste. Herein, we present a novel strategy for achieving cyclic and waste-free nonequilibrium assembly and disassembly of macroscopic hydrogels, utilizing an ionic strength-mediated approach. Our strategy involves using ammonium carbonate as a chemical fuel to temporally regulate the attractions between oppositely charged hydrogels via ionic strength-controlled charge screening and hydrogel elasticity changes. This chemical fuel effectively mediates the assembly/disassembly processes and prevents waste accumulation, as ammonium carbonate can completely decompose into volatile chemical waste. The cyclic and reversible assembly process can be achieved without significant damping due to the self-clearance mechanism, as long as the chemical fuel is repeatedly supplied. This concept holds promise for creating macroscopic and microscopic nonequilibrium systems and self-adaptive materials.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhongrui Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
14
|
Liu X, Zhang X, Yao Y, Shi P, Zeng C, Zhang Q. Construction of DNA-based molecular circuits using normally open and normally closed switches driven by lambda exonuclease. NANOSCALE 2023; 15:7755-7764. [PMID: 37051702 DOI: 10.1039/d3nr00427a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Building synthetic molecular circuits is an important way to realize ion detection, information processing, and molecular computing. However, it is still challenging to implement the NOT logic controlled by a single molecule input in synthetic molecular circuits wherein the presence or absence of the molecule represents the ON or OFF state of the input. Here, based on lambda exonuclease (λ exo), for the first time, we propose the normally open (NO) and normally closed (NC) switching strategy with a unified signal transmission mechanism to build molecular circuits. Specifically, the opposite logic can be output with or without a single signal, and the state of the switch can be adjusted by the addition order and time interval of the upstream signal and switch signal, which endows the switch with time-responsive characteristics. In addition, a time-delay relay with the function of delayed disconnection is developed to realize quantitative control of outputs, which has the potential to meet the automation control need of the system. Finally, digital square and square root circuits are constructed by cascading the NO and NC switches, which demonstrates the versatility of switches. Our design can be extended to time logic and complex digital computing circuits for use in information processing and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
15
|
Nikfarjam S, Gibbons R, Burni F, Raghavan SR, Anisimov MA, Woehl TJ. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules 2023; 24:1131-1140. [PMID: 36795055 DOI: 10.1021/acs.biomac.2c01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cells assemble dynamic protein-based nanostructures far from equilibrium, such as microtubules, in a process referred to as dissipative assembly. Synthetic analogues have utilized chemical fuels and reaction networks to form transient hydrogels and molecular assemblies from small molecule or synthetic polymer building blocks. Here, we demonstrate dissipative cross-linking of transient protein hydrogels using a redox cycle, which exhibit protein unfolding-dependent lifetimes and mechanical properties. Fast oxidation of cysteine groups on bovine serum albumin by hydrogen peroxide, the chemical fuel, formed transient hydrogels with disulfide bond cross-links that degraded over hours by a slow reductive back reaction. Interestingly, despite increased cross-linking, the hydrogel lifetime decreased as a function of increasing denaturant concentration. Experiments showed that the solvent-accessible cysteine concentration increased with increasing denaturant concentration due to unfolding of secondary structures. The increased cysteine concentration consumed more fuel, which led to less direction oxidation of the reducing agent and affected a shorter hydrogel lifetime. Increased hydrogel stiffness, disulfide cross-linking density, and decreased oxidation of redox-sensitive fluorescent probes at a high denaturant concentration provided evidence supporting the unveiling of additional cysteine cross-linking sites and more rapid consumption of hydrogen peroxide at higher denaturant concentrations. Taken together, the results indicate that the protein secondary structure mediated the transient hydrogel lifetime and mechanical properties by mediating the redox reactions, a feature unique to biomacromolecules that exhibit a higher order structure. While prior works have focused on the effects of the fuel concentration on dissipative assembly of non-biological molecules, this work demonstrates that the protein structure, even in nearly fully denatured proteins, can exert similar control over reaction kinetics, lifetime, and resulting mechanical properties of transient hydrogels.
Collapse
Affiliation(s)
- Shakiba Nikfarjam
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Rebecca Gibbons
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Faraz Burni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20740, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
16
|
Wang J, Zhang X, Shi P, Cao B, Wang B. A DNA Finite-State Machine Based on the Programmable Allosteric Strategy of DNAzyme. Int J Mol Sci 2023; 24:ijms24043588. [PMID: 36834996 PMCID: PMC9963683 DOI: 10.3390/ijms24043588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Living organisms can produce corresponding functions by responding to external and internal stimuli, and this irritability plays a pivotal role in nature. Inspired by such natural temporal responses, the development and design of nanodevices with the ability to process time-related information could facilitate the development of molecular information processing systems. Here, we proposed a DNA finite-state machine that can dynamically respond to sequential stimuli signals. To build this state machine, a programmable allosteric strategy of DNAzyme was developed. This strategy performs the programmable control of DNAzyme conformation using a reconfigurable DNA hairpin. Based on this strategy, we first implemented a finite-state machine with two states. Through the modular design of the strategy, we further realized the finite-state machine with five states. The DNA finite-state machine endows molecular information systems with the ability of reversible logic control and order detection, which can be extended to more complex DNA computing and nanomachines to promote the development of dynamic nanotechnology.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
- Correspondence: ; Tel.: +86-0411-87402106
| |
Collapse
|