1
|
Chen W, Sun Q, Li J, Gong Z, Xie W, Ouyang Z, Zheng B, Zhao J, Xiao Y, Lei S, Cheng B. Modulation of Surface/Interface States in Bi 2S 3/VS 4 Heterostructure With CN Layer for High-Performance Sodium-Ion Batteries: Enhanced Built-in Electric Field and Polysulfide Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500359. [PMID: 40167524 DOI: 10.1002/smll.202500359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Metal sulfides are promising materials for sodium-ion batteries (SIBs) owing to unique structures and high theoretical capacity. However, issues like poor conductivity, large volume changes, and polysulfide dissolution limit practical application. This study introduces a novel Christmas tree-like heterostructure composed of Bi2S3 and VS4 encapsulated in nitrogen-doped carbon shell (Bi2S3/VS4@CN), synthesized by sulfurizing dopamine-coated BiVO4 precursor. The in situ synthesis ensures excellent lattice matching between Bi2S3 and VS4, minimizing interface states and enhancing effective built-in electric field. This design accelerates electrochemical reaction kinetics; moreover, it promotes progressive reaction that mitigates structural fragmentation, suppresses degradation, and prevents polysulfide dissolution and shuttle. Additionally, the CN shell effectively passivates the surface states of Bi2S3 and VS4 nanostructures, lowering surface barrier and improving overall conductivity. As a result, Bi2S3/VS4@CN-based half-SIBs demonstrate remarkable long-cycle stability, maintaining 387.1 mAh g-1 after 1600 cycles at 2 A g-1, and excellent rate performance with 376.3 mAh g-1 at 5 A g-1. Full-SIBs using Na3V2(PO4)3//Bi2S3/VS4@CN exhibit outstanding cycling stability, retaining 117.2 mAh g-1 after 200 cycles at 1 A g-1, along with 218 Wh kg-1 high energy density at 145.3 W kg-1. This work highlights the potential of heterostructures in advancing metal sulfide-based SIBs for high-performance energy storage.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Qinghua Sun
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Jianchao Li
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Ziwei Gong
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Wenju Xie
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
- Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
- College of Ecology and Resources Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Fujian, 354300, P. R. China
| | - Zhiyong Ouyang
- School of Materials and Energy, Jiangxi Science and Technology Normal University, Jiangxi, 330038, P. R. China
| | - Bai Zheng
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
- Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
| |
Collapse
|
2
|
Cai Z, Li L, Ding P, Pang D, Xu M, Xu Z, Kang J, Guo T, Teobaldi G, Wang Z, Liu LM, Guo L. High-Valence Cu Induced by Photoelectric Reconstruction for Dynamically Stable Oxygen Evolution Sites. J Am Chem Soc 2024; 146:19295-19302. [PMID: 38943666 DOI: 10.1021/jacs.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Oxygen vacancies are generally considered to play a crucial role in the oxygen evolution reaction (OER). However, the generation of active sites created by oxygen vacancies is inevitably restricted by their condensation and elimination reactions. To overcome this limitation, here, we demonstrate a novel photoelectric reconstruction strategy to incorporate atomically dispersed Cu into ultrathin (about 2-3 molecular) amorphous oxyhydroxide (a-CuM, M = Co, Ni, Fe, or Zn), facilitating deprotonation of the reconstructed oxyhydroxide to generate high-valence Cu. The in situ XAFS results and first-principles calculations reveal that Cu atoms are stabilized at high valence during the OER process due to Jahn-Teller distortion, resulting in para-type double oxygen vacancies as dynamically stable catalytic sites. The optimal a-CuCo catalyst exhibits a record-high mass activity of 3404.7 A g-1 at an overpotential of 300 mV, superior to the benchmarking hydroxide and oxide catalysts. The developed photoelectric reconstruction strategy opens up a new pathway to construct in situ stable oxygen vacancies by high-valence Cu single sites, which extends the design rules for creating dynamically stable active sites.
Collapse
Affiliation(s)
- Zhi Cai
- School of Chemistry, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Lidong Li
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Dawei Pang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyuan Xu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ziyan Xu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Zhang D, Shao Y, Wang J, Li Z, Wang Q, Sun H, Sun Q, Wang B. Cobalt-Mediated Defect Engineering Endows High Reversible Amorphous VS 4 Anode for Advanced Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309901. [PMID: 38299768 DOI: 10.1002/smll.202309901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Metal sulfides are promising anode materials for sodium-ion batteries (SIBs) due to their structural diversity and high theoretical capacity, but the severe capacity decay and inferior rate capability caused by poor structural stability and sluggish kinetics impede their practical applications. Herein, a cobalt-doped amorphous VS4 wrapped by reduced graphene oxide (i.e., Co0.5-VS4/rGO) is developed through a Co-induced defect engineering strategy to boost the kinetics performances. The as-prepared Co0.5-VS4/rGO demonstrates excellent rate capacities over 10 A g-1 and superior cycling stability at 5 A g-1 over 1600 cycles, which is attributed to the defects formed by Co doping, the formed amorphous structure and the robust rGO substrate. The great features of Co0.5-VS4/rGO anode are further confirmed in sodium-ion capacitors when the active carbon cathode is used. Additionally, the relationships between metal doping, the derived defects, the amorphous structure, and the sodium storage of VS4 are uncovered. This work provides deep insights into preparing amorphous functional materials and also probes the potential applications of metal sulfide-based electrode materials for advanced batteries.
Collapse
Affiliation(s)
- Di Zhang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Yachuan Shao
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Jian Wang
- Centre for Ionics, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zhaojin Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Qiujun Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Huilan Sun
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Qujiang Sun
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Bo Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| |
Collapse
|
4
|
Li C, Yu H, Dong P, Wang D, Zeng X, Wang J, Zhang Z, Zhang Y, Sarapulova A, Luo X, Pfeifer K, Ehrenberg H, Dsoke S. Constructing Hollow Microcubes SnS 2 as Negative Electrode for Sodium-ion and Potassium-ion Batteries. Chemistry 2024; 30:e202304296. [PMID: 38380537 DOI: 10.1002/chem.202304296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
Sodium/potassium-ion batteries (NIBs and KIBs) are considered the most promising candidates for lithium-ion batteries in energy storage fields. Tin sulfide (SnS2) is regarded as an attractive negative candidate for NIBs and KIBs thanks to its superior power density, high-rate performance and natural richness. Nevertheless, the slow dynamics, the enormous volume change and the decomposition of polysulfide intermediates limit its practical application. Herein, microcubes SnS2 were prepared through sacrificial MnCO3 template-assisted and a facile solvothermal reaction strategy and their performance was investigated in Na and K-based cells. The unique hollow cubic structure and well-confined SnS2 nanosheets play an important role in Na+/K+ rapid kinetic and alleviating volume change. The effect of the carbon additives (Super P/C65) on the electrochemical properties were investigated thoroughly. The in operando and ex-situ characterization provide a piece of direct evidence to clarify the storage mechanism of such conversion-alloying type negative electrode materials.
Collapse
Affiliation(s)
- Chengping Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Hongrui Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Peng Dong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Ding Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Xiaoyuan Zeng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Jinsong Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Zhengfu Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Angelina Sarapulova
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Fraunhofer Institute for Solar Energy Systems, Dep. Electrical Energy Storage, Heidenhofstr.2, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Xianlin Luo
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Kristina Pfeifer
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Helmut Ehrenberg
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Fraunhofer Institute for Solar Energy Systems, Dep. Electrical Energy Storage, Heidenhofstr.2, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Institute for Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Straße 2, 79110, Freiburg, Germany
| |
Collapse
|
5
|
Singh M, Yadav A, Singh R, Pradeep CP. Aryl selenonium vs. aryl sulfonium counterions in polyoxometalate chemistry: the impact of Se + cationic centers on the photocatalytic reduction of dichromate. Dalton Trans 2024; 53:724-737. [PMID: 38086687 DOI: 10.1039/d3dt03465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A selenonium organic counter ion has been used in polyoxometalate chemistry to develop a new aryl selenonium polyoxometalate (POM) hybrid, and its photocatalytic properties have been explored in comparison with an aryl sulfonium POM-hybrid counterpart for the first time. The chalcogenonium counterions, namely, methyldiphenylsulfonium trifluoromethane sulfonate (MDPST) and methyldiphenylselenonium trifluoromethane sulfonate (MDPSeT), and their octamolybdate ([Mo8O26]4-) hybrids, 1 and 2, with the general formula (C13H13X)4[Mo8O26] (where X = S for 1 and Se for 2) were synthesized and characterized. Hybrids 1 and 2 vary in their chalcogenonium cationic center (S+vs. Se+), which enabled a direct comparison of their photocatalytic properties as a function of the cationic center. The photocatalytic activities of hybrids 1 and 2 were tested using the reduction of dichromate (Cr2O72-) as a model reaction under UV irradiation. A 99% photocatalytic reduction of Cr2O72- with a rate constant of 0.0305 min-1 was achieved with hybrid 2, while only a 67% reduction with a rate constant of 0.0062 min-1 was observed with hybrid 1 in 180 minutes. The better catalytic performance of hybrid 2 may be correlated to the larger atomic radii of Se than S, which helps in better stabilizing the photogenerated electron-hole (e--h+) pair on the POM cluster by polarizing its lone pair more efficiently compared to S. The catalytic recyclability was tested for up to 4 cycles using hybrid 2, and up to 98% reduction was obtained even after the 4th cycle. Recyclability tests and control experiments also indicated the generation of some elemental Se through possible cleavage of some C-Se bonds of MDPSe under prolonged UV exposure during catalysis, and the Se thus generated was found to contribute to the catalytic reduction of dichromate. This study, therefore, opens new avenues for aryl selenonium moieties and their POM hybrids for potential catalytic applications.
Collapse
Affiliation(s)
- Mahender Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Aakash Yadav
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Ranjit Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| |
Collapse
|
6
|
Fan S, Liu H, Bi S, Meng X, Zhong H, Zhang Q, Xie Y, Xue J. Optimization of Sodium Storage Performance by Structure Engineering in Nickel-Cobalt-Sulfide. CHEMSUSCHEM 2023; 16:e202300435. [PMID: 37096686 DOI: 10.1002/cssc.202300435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The development of high-performance electrode materials is crucial for the advancement of sodium ion batteries (SIBs), and NiCo2 S4 has been identified as a promising anode material due to its high theoretical capacity and abundant redox centers. However, its practical application in SIBs is hampered by issues such as severe volume variations and poor cycle stability. Herein, the Mn-doped NiCo2 S4 @graphene nanosheets (GNs) composite electrodes with hollow nanocages were designed using a structure engineering method to relieve the volume expansion and improve the transport kinetics and conductivity of the NiCo2 S4 electrode during cycling. Physical characterization and electrochemical tests, combined with density functional theory (DFT) calculations indicate that the resulting 3 % Mn-NCS@GNs electrode demonstrates excellent electrochemical performance (352.9 mAh g-1 at 200 mA g-1 after 200 cycles, and 315.3 mAh g-1 at 5000 mA g-1 ). This work provides a promising strategy for enhancing the sodium storage performance of metal sulfide electrodes.
Collapse
Affiliation(s)
- Shanshan Fan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, P. R. China
- Department of Materials Science and Engineering, National University of Singapore, 117573, Singapore
| | - Haiping Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, P. R. China
| | - Sifu Bi
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai, 264209, P. R. China
| | - Xiaohuan Meng
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, P. R. China
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, 117573, Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, 117573, Singapore
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, 117573, Singapore
| |
Collapse
|
7
|
Zhang X, Tu X, Liu Y, Zhu Y, Zhang J, Wang J, Shi R, Li L. Morphology Engineering of VS 4 Microspheres as High-Performance Cathodes for Hybrid Mg 2+/Li + Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37442-37453. [PMID: 37494549 DOI: 10.1021/acsami.3c06471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
V-based sulfides are considered as potential cathode materials for Mg2+/Li+ hybrid ion batteries (MLIBs) due to their high theoretical specific capacities, unique crystal structure, and flexible valence adjustability. However, the formation of irreversible polysulfides, poor cycling performance, and severe structural collapse at high current densities impede their further development. Herein, VS4 microspheres with various controllable nanoarchitectures were successfully constructed via a facile solvothermal method by adjusting the amount of hydrochloric acid and were used as cathode materials for MLIBs. The VS4 microsphere self-assembled by bundles of paralleled-nanorods and some intersected-nanorods (VS4@NC-5) exhibits an outstanding initial discharge capacity of 805.4 mAh g-1 at 50 mA g-1 that is maintained at 259.1 mAh g-1 after 70 cycles. Moreover, the VS4@NC-5 cathode can deliver a superior rate capability (146.1 mAh g-1 at 2000 mA g-1) and ultralong cycling life (134.5 mAh g-1 at 2000 mA g-1 after 2000 cycles). The extraordinary electrochemical performance of VS4@NC-5 could be attributed to its special multi-hierarchical microsphere structure and the formation of N-doped carbon layers and V-C bonds, resulting in unobstructed ion diffusion channels, multidimensional electron transfer pathways, and enhancements of electrical conductivity and structure stability. Furthermore, the electrochemical reaction mechanism and phase conversion behavior of the VS4@NC-5 cathode at various states are investigated by a series of ex situ characterization methods. The VS4 well-designed through morphological engineering in this work can pave a way to explore more sulfides with high-rate performance and long cycling stability for energy storage devices.
Collapse
Affiliation(s)
- Xu Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Xing Tu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Rui Shi
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| | - Liquan Li
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR. China
| |
Collapse
|
8
|
Wang Y, Kang W, Sun D. Metal-Organic Assembly Strategy for the Synthesis of Layered Metal Chalcogenide Anodes for Na + /K + -Ion Batteries. CHEMSUSCHEM 2023; 16:e202202332. [PMID: 36823442 DOI: 10.1002/cssc.202202332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/20/2023]
Abstract
Layered transition metal chalcogenides (MX, M=Mo, W, Sn, V; X=S, Se, Te) have large ion transport channels and high specific capacity, making them promising for large-sized Na+ /K+ energy-storage technologies. Nevertheless, slow reaction kinetics and huge volume expansion will induce an undesirable electrochemical performance. Numerous efforts have been devoted to designing MX anodes and enhancing their electrochemical performance. Based on the metal-organic assembly strategy, nanostructural engineering, combination with carbon materials, and component regulation can be easily realized, which effectively boost the performance of MX anodes. In this Review, we present a comprehensive overview on the synthesis of MX nanostructure using the metal-organic assembly strategy, which can realize the design of MX nanostructures, based on self-sacrificial templates, host@guest tailored templates, post-modified layer and derivative templates. The preparation routes and structure evolution are mainly discussed. Then, Mo-, W-, Sn-, V-based chalcogenides used for Na+ /K+ energy storage are reviewed, and the relationship between the structure and the electrochemical performance, as well as the energy storage mechanism are emphasized. In addition, existing challenges and future perspectives are also presented.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenpei Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
9
|
Salvatore KL, Fang J, Tang CR, Takeuchi ES, Marschilok AC, Takeuchi KJ, Wong SS. Microwave-Assisted Fabrication of High Energy Density Binary Metal Sulfides for Enhanced Performance in Battery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101599. [PMID: 37242017 DOI: 10.3390/nano13101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Nanomaterials have found use in a number of relevant energy applications. In particular, nanoscale motifs of binary metal sulfides can function as conversion materials, similar to that of analogous metal oxides, nitrides, or phosphides, and are characterized by their high theoretical capacity and correspondingly low cost. This review focuses on structure-composition-property relationships of specific relevance to battery applications, emanating from systematic attempts to either (1) vary and alter the dimension of nanoscale architectures or (2) introduce conductive carbon-based entities, such as carbon nanotubes and graphene-derived species. In this study, we will primarily concern ourselves with probing metal sulfide nanostructures generated by a microwave-mediated synthetic approach, which we have explored extensively in recent years. This particular fabrication protocol represents a relatively facile, flexible, and effective means with which to simultaneously control both chemical composition and physical morphology within these systems to tailor them for energy storage applications.
Collapse
Affiliation(s)
- Kenna L Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Justin Fang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Christopher R Tang
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Esther S Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Amy C Marschilok
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
10
|
Wu X, Zhao S, Yin L, Wang L, Li L, Hu F, Peng S. Amorphous porous sulfides nanosheets with hydrophilic/aerophobic surface for high-current-density water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|