1
|
Chen S, Ding F, Liu C, Yang L, Lu Y, Zhang Y, Liu Q. A General Strategy for Enhanced Single-Molecule Imaging Through Intramolecular Energy Transfer. Angew Chem Int Ed Engl 2025:e202502112. [PMID: 40235341 DOI: 10.1002/anie.202502112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Single-molecule imaging demands fluorophores with exceptional photostability and photon budget. This study presents an intramolecular energy transfer (IMET) strategy to enhance these critical properties. We developed xanthene-based IMET cassettes by covalently linking donor and acceptor, achieving significant improvements in single-molecule imaging performance. While extensive spectral overlap is generally beneficial in bulk systems, single-molecule imaging necessitates careful optimization to minimize direct acceptor excitation at the high excitation powers typically used. Our optimized cassettes, featuring rhodamine as donor and Si-rhodamine as acceptor, exhibit 94.8% energy transfer efficiency. This configuration effectively minimizes direct excitation-induced acceptor bleaching, as 94.9% of molecules exhibit donor photobleaching prior to acceptor photobleaching. This efficient energy management leads to a 670% enhancement in photostability, arising from the competition between IMET and photobleaching pathways, which effectively channels excitation energy away from photo-destructive processes. Time-resolved transient absorption spectroscopy revealed that IMET occurs on a picosecond timescale, significantly faster than both fluorescence relaxation (nanoseconds) and photobleaching (seconds). Notably, these IMET cassettes demonstrated superior performance in single-molecule tracking applications, including on supported lipid bilayers and in live-cell tracking of epidermal growth factor receptor (EGFR) dynamics, highlighting the broad potential of the IMET strategy for advancing single-molecule imaging.
Collapse
Affiliation(s)
- Song Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fan Ding
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Lu Yang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yankun Lu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Luo J, Zhang C, Wu M, Yao X, Duan Y, Li Y. Excitation/emission-enhanced heterostructure photonic crystal array synergizing with "DD-A" FRET entropy-driven circuit for high-resolution and ultrasensitive analysis of ctDNA. Biosens Bioelectron 2024; 263:116615. [PMID: 39106690 DOI: 10.1016/j.bios.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.
Collapse
Affiliation(s)
- Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xiuyuan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
3
|
Xu L, Chen L, Liu H, Chen X, Zhang S. In vivo targeted-imaging of mitochondrial acidification in an aristolochic acid I-induced nephrotoxicity mouse model by a fluorescent/photoacoustic bimodal probe. Mater Today Bio 2024; 28:101240. [PMID: 39309164 PMCID: PMC11415585 DOI: 10.1016/j.mtbio.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.
Collapse
Affiliation(s)
- Li Xu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
- The School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xingwang Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, 350025108, China
| |
Collapse
|
4
|
Hu Q, Du Y, Bai Y, Xing D, Wu C, Li K, Lang S, Liu X, Liu G. Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections. Biomater Sci 2024; 12:4471-4482. [PMID: 39058335 DOI: 10.1039/d4bm00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hydrophilic antifouling coatings based on zwitterionic polymers have been widely applied for the surface modification of bone implants to combat biofilm formation and reduce the likelihood of implant-related infections. However, their long-term effectiveness is significantly limited by the lack of effective and precise antibacterial activity. Here, a pH-responsive smart zwitterionic antibacterial coating (PSB/GS coating) was designed and robustly fabricated onto titanium-base bone implants by using a facile two-step method. First, dopamine (DA) and a poly(sulfobetaine methacrylate-co-dopamine methacrylamide) (PSBDA) copolymer were deposited on implants via mussel-inspired surface chemistry, resulting in a hydrophilic base coating with abundant catechol residues. Next, an amino-rich antibiotic, gentamicin sulfate (GS), was covalently linked to the coating through the formation of acid-sensitive Schiff base bonds between the amine groups of GS and the catechol residues present in both the zwitterionic polymer and the DA component. During the initial implantation period, the hydrophilic zwitterionic polymers demonstrated the desired anti-fouling properties that could effectively reduce protein and bacterial adhesion by over 90%. With time, the bacterial proliferation led to a decrease in the microenvironment pH value, resulting in the hydrolysis of the acid-sensitive Schiff base bonds, thereby releasing GS on demand and effectively enhancing the anti-biofilm properties of coatings. Benefiting from this synergistic antifouling and smart antibacterial activities, the PSB/GS coating exerted an excellent anti-infective activity in both in vivo preoperative and postoperative infection rat models. This proposed facile yet effective coating strategy is expected to provide a promising solution to combat bone implant-related infections.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedic Surgery, Ya'an People's Hospital, Ya'an 625000, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, China
| | - Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chengcheng Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoyan Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Yan Z, Zhang R, Qiao M, Ma M, Liu T, Ding L, Fang Y. Single-Probe-Based Sensor Array for Fingerprint Recognition of Trivalent Metal Ions and Application in Water Identification. Anal Chem 2024. [PMID: 39152896 DOI: 10.1021/acs.analchem.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Abnormal concentration levels of trivalent metal ions (M3+) might hinder their natural biological activities in physiological processes and cause severe health hazards. Herein, a dual-chromophore probe (RhB-TPE) composed of rhodamine and tetraphenylethene (TPE) units was synthesized and explored for discriminating M3+ ions. It exhibited special aggregation and AIE properties in aqueous media. Its ensemble with anionic surfactant SDBS assemblies (RhB-TPE/SDBS) could be utilized as fluorescent sensors for selective and sensitive detection of M3+ ions such as Fe3+, Al3+, and Cr3+ by illustrating quenched TPE emission and switched-on rhodamine emission. Moreover, the use of SDBS assemblies at two concentrations could provide a single-probe-based sensor array and realize four-signal pattern recognition of different concentrations of the three M3+ ions and identify M3+ mixtures or unknown samples. The cross-reactive fluorescence variation was attributed to the M3+ influence on the FRET process from TPE to open-ring form rhodamine in the two ensemble sensors. With the coexistence of Al3+, the optimized RhB-TPE/SDBS ensemble sensor array was successfully applied to differentiate commercially available brand mineral water and purified water, as well as tap water. The present work provides a novel strategy to generate a single-probe-based sensor array and realizes fingerprint recognition of three trivalent metal ions and efficient discrimination of different types of water. The modulation FRET process of a dual chromophore in different surfactant ensembles inspires the future construction of novel and effective sensing platforms.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Rongrong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Min Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Miao Ma
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
6
|
Li N, Chen Z, Zhan Y, Deng W, Lv T, Xu Z, Wang L, Liu B. Anti-cancer drug axitinib: a unique tautomerism-induced dual-emissive probe for protein analysis. Chem Commun (Camb) 2024; 60:6138-6141. [PMID: 38804199 DOI: 10.1039/d4cc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A commercial anti-cancer drug, axitinib, exhibits very stable dual emissions for discrimination of human serum albumin.
Collapse
Affiliation(s)
- Na Li
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Zihao Chen
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Yilin Zhan
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Weihua Deng
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Zhongyong Xu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Lei Wang
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Bin Liu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
7
|
Su M, Yin M, Zhou Y, Xiao S, Yi J, Tang R. Freeze-Thaw Microfluidic System Produces "Themis" Nanocomplex for Cleaning Persisters-Infected Macrophages and Enhancing Uninfected Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311436. [PMID: 38181783 DOI: 10.1002/adma.202311436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Macrophages are the primary effectors against potential pathogen infections. They can be "parasitized" by intracellular bacteria, serving as "accomplices", protecting intracellular bacteria and even switching them to persisters. Here, using a freeze-thaw strategy-based microfluidic chip, a "Themis" nanocomplex (TNC) is created. The TNC consists of Lactobacillus reuteri-derived membrane vesicles, heme, and vancomycin, which cleaned infected macrophages and enhanced uninfected macrophages. In infected macrophages, TNC releases heme that led to the reconstruction of the respiratory chain complexes of intracellular persisters, forcing them to regrow. The revived bacteria produces virulence factors that destroyed host macrophages (accomplices), thereby being externalized and becoming vulnerable to immune responses. In uninfected macrophages, TNC upregulates the TCA cycle and oxidative phosphorylation (OXPHOS), contributing to immunoenhancement. The combined effect of TNC of cleaning the accomplice (infected macrophages) and reinforcing uninfected macrophages provides a promising strategy for intracellular bacterial therapy.
Collapse
Affiliation(s)
- Mingyue Su
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Mengying Yin
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yifu Zhou
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuya Xiao
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jundan Yi
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Rongbing Tang
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Li J, Zhang S, He C, Ling J. Electrospun fibers based anisotropic silk fibroin film with photodynamic antibacterial therapy for S. aureus infected wound healing. Int J Biol Macromol 2024; 254:127685. [PMID: 38287584 DOI: 10.1016/j.ijbiomac.2023.127685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Bacterial infection has been regarded as a life-threatening problem in clinic. In addition to screening of new antibiotics, it is important to develop highly effective antibacterial materials against antibiotic resistance with capacities on modulating chronic inflammation. Herein, aligned Chlorin e6 (Ce6) conjugated silk fibroin electrospun fibers were successfully fabricated on silk fibroin based film via electrospining to achieve effective photodynamic antibacterial activities under near infrared (NIR) irradiation. The aligned electrospun fiber based film composite (SFCF@Film) exhibited good mechanical properties and desirable hemocompatibility. SFCF@Film provided a promising guidance cue for directing cell orientation and promoting cell growth. Significantly, SFCF@Film effectively generated ROS under NIR irradiation to kill S. aureus for treating wound infections within 10 min and promoted M2 polarization of macrophages for wound healing at later stage. Therefore, we believed that this engineered bioscaffold can be a powerful strategy for handling wound infection.
Collapse
Affiliation(s)
- Jiaying Li
- Hospital-Acquired Infection Control Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.
| |
Collapse
|
9
|
Zhou L, Wang Z, Wang L, Zhang X, Xiao Y. Tetrazine-Based Ratiometric Nitric Oxide Sensor Identifies Endogenous Nitric Oxide in Atherosclerosis Plaques by Riding Macrophages as a Smart Vehicle. J Am Chem Soc 2023; 145:28296-28306. [PMID: 38090812 DOI: 10.1021/jacs.3c12181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Atherosclerosis (AS) is the formation of plaques in blood vessels, which leads to serious cardiovascular diseases. Current research has disclosed that the formation of AS plaques is highly related to the foaming of macrophages. However, there is a lack of detailed molecular biological mechanisms. We proposed a "live sensor" by grafting a tetrazine-based ratiometric NO probe within macrophages through metabolic and bio-orthogonal labeling. This "live sensor" was proved to target the AS plaques with a diameter of only tens of micrometers specifically and visualized endogenous NO at two lesion stages in the AS mouse model. The ratiometric signals from the probe confirmed the participation of NO during AS and indicated that the generation of endogenous NO increased significantly as the lesion progressed. Our proposal of this "live sensor" provided a native and smart strategy to target and deliver small molecular probes to the AS plaques at the in vivo level, which can be used as universal platforms for the detection of reactive molecules or microenvironmental factors in AS.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zehui Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|