1
|
Li R, Zhao H, Wang L, Zhou Q, Yang X, Jiang L, Luo X, Yu J, Wei J, Mu S. Strengthened d-p orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions. Chem Sci 2025:d4sc08498e. [PMID: 39916888 PMCID: PMC11795299 DOI: 10.1039/d4sc08498e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Developing advanced catalysts with rapid hydrogen evolution reaction (HER) kinetics in alkaline media is vital for hydrogen production. Through the d-p orbital hybridization effect, the electronic structure and H* adsorption can be optimized on metal species. Herein, a N-doped hollow carbon (H-NPC)-supported Ru cluster (c-Ru@H-NPC) catalyst was constructed via carbonization of well-defined hollow metal-organic frameworks, followed by etching and anchoring of Ru clusters. The hollow structure could not alter the coordination number of Ru while exhibiting higher-level electron transfer, thereby strengthening the orbital hybridization. Additionally, finite element simulations indicated the acceleration of H2 diffusion for hollow structures. Furthermore, the N-doping strengthened the electron interaction of Ru-C by the d-p hybridization effect, which was confirmed by theoretical calculations and in situ Raman spectroscopy. Therefore, in alkaline/alkaline seawater media, c-Ru@H-NPC needed only 10/12 mV overpotentials and 1.52/1.55 V cell voltages to drive the HER and overall water splitting, respectively, at a current density of 10 mA cm-2, exhibiting outstanding catalytic activity. Meanwhile, the attenuation of current density was very small towards successive stability tests for >55 h at 10 mA cm-2. This work permits new insights into the design of high-performance metal cluster catalysts for the HER and other conversion reactions.
Collapse
Affiliation(s)
- Ruidong Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Lin Wang
- NRC (Nanostructure Research Centre), Wuhan University of Technology Wuhan 430070 China
| | - Qingqu Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Xiong Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Linbo Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Xu Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Jingwen Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
2
|
Xi Y, Xiang Y, Bao T, Li Z, Zhang C, Yuan L, Li J, Bi Y, Yu C, Liu C. Nanoarchitectonics of S-Scheme Heterojunction Photocatalysts: A Nanohouse Design Improves Photocatalytic Nitrate Reduction to Ammonia Performance. Angew Chem Int Ed Engl 2024; 63:e202409163. [PMID: 38924334 DOI: 10.1002/anie.202409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Photocatalytic nitrate reduction reaction (NitRR) is a promising route for environment remediation and sustainable ammonia synthesis. To design efficient photocatalysts, the recently emerged nanoarchitectonics approach holds great promise. Here, we report a nanohouse-like S-scheme heterjunction photocatalyst with high photocatalytic NitRR performance. The nano-house has a floor of plate-like metal organic framework-based photocatalyst (NH2-MIL-125), on which another photocatalyst Co(OH)2 nanosheet is grown while ZIF-8 hollow cages are also constructed as the surrounding wall/roof. Experimental and simulation results indicate that the positively charged, highly porous and hydrophobic ZIF-8 wall can modulate the environment in the nanohouse by (i) NO3 - enrichment/NH4 + discharge and (ii) suppression of the competitive hydrogen evolution reaction. In combination with the enhanced electron-hole separation and strong redox capability in the NH2-MIL-125@Co(OH)2 S-scheme heterjunction confined in the nano-house, the designed photocatalyst delivers an ammonia yield of 2454.9 μmol g-1 h-1 and an apparent quantum yield of 8.02 % at 400 nm in pure water. Our work provides new insights into the design principles of advanced photocatalytic NitRR photocatalyst.
Collapse
Affiliation(s)
- Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhijie Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yin Bi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
3
|
Qu W, Tang Z, Wen H, Tang S, Lian Q, Zhao H, Tian S, Shu D, He C. Optimization of Carbon-Defect Engineering to Boost Catalytic Ozonation Efficiency of Single Fe─N 4 Coordination Motif. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311879. [PMID: 38461527 DOI: 10.1002/smll.202311879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Carbon-defect engineering in single-atom metal-nitrogen-carbon (M─N─C) catalysts by straightforward and robust strategy, enhancing their catalytic activity for volatile organic compounds, and uncovering the carbon vacancy-catalytic activity relationship are meaningful but challenging. In this study, an iron-nitrogen-carbon (Fe─N─C) catalyst is intentionally designed through a carbon-thermal-diffusion strategy, exposing extensively the carbon-defective Fe─N4 sites within a micro-mesoporous carbon matrix. The optimization of Fe─N4 sites results in exceptional catalytic ozonation efficiency, surpassing that of intact Fe─N4 sites and commercial MnO2 by 10 and 312 times, respectively. Theoretical calculations and experimental data demonstrated that carbon-defect engineering induces selective cleavage of C─N bond neighboring the Fe─N4 motif. This induces an increase in non-uniform charges and Fermi density, leading to elevated energy levels at the center of Fe d-band. Compared to the intact atomic configuration, carbon-defective Fe─N4 site is more activated to strengthen the interaction with O3 and weaken the O─O bond, thereby reducing the barriers for highly active surface atomic oxygen (*O/*OO), ultimately achieving efficient oxidation of CH3SH and its intermediates. This research not only offers a viable approach to enhance the catalytic ozonation activity of M─N─C but also advances the fundamental comprehension of how periphery carbon environment influences the characteristics and efficacy of M─N4 sites.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Su Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Zheng Z, Zhou P, Tang X, Zeng Q, Yi S, Liao J, Hu M, Wu D, Zhang B, Liang J, Huang C. Hierarchical MOFs with Good Catalytic Properties and Structural Stability in Oxygen-Rich and High-Temperature Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309302. [PMID: 38372497 DOI: 10.1002/smll.202309302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/14/2024] [Indexed: 02/20/2024]
Abstract
Metal-organic framework materials are ideal materials characterized by open frameworks, adjustable components, and high catalytic activity. They are extensively utilized for catalysis. Due to decomposition and structural collapse under high temperatures and an oxygen-rich environment, the potential of thermal catalysis is greatly limited. In this research, Co-rich hollow spheres (Co-HSs) with a gradient composition are designed and synthesized to investigate their thermal catalytic properties in the ammonium perchlorate(AP)system. The results demonstrate that Co-HSs@AP exhibits good thermal catalytic activity and a high-temperature decomposition of 292.5 °C, which is 121.6 °C lower than pure AP. The hierarchical structure confers structural stability during the thermal decomposition process. Thermogravimetry-infrared indicates that the inclusion of Co-HSs successfully boosts the level of reactive oxygen species and achieves thorough oxidation of NH3. Based on the above phenomenon, macro dynamics calculations are carried out. The results show that Co-HSs can promote the circulation of lattice oxygen and reactive oxygen species and the multidimensional diffusion of NH3 in an oxygen-rich environment. This material has significant potential for application in the fields of thermal catalysis and ammonia oxidation.
Collapse
Affiliation(s)
- Zeyu Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Peng Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Xiaolin Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Qihui Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Shengping Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Jun Liao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingjie Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Dan Wu
- System Design Institute of Hubei Aerospace Technology Academy, Wuhan, 430040, China
| | - Bin Zhang
- System Design Institute of Hubei Aerospace Technology Academy, Wuhan, 430040, China
| | - Jiqiu Liang
- System Design Institute of Hubei Aerospace Technology Academy, Wuhan, 430040, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| |
Collapse
|
5
|
Wang S, Lin C, Zhang X, Tan Y, Xiao B, Zeng Y, Tian J, Cao M, Jiang Y, Li M. Engineering Internal and External Low-Coordination Atoms in Nickel-Organic Framework Nanoarrays to Promote the Electrochemical Oxygen Evolution Reaction. Inorg Chem 2024; 63:11242-11251. [PMID: 38843107 DOI: 10.1021/acs.inorgchem.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Monometallic nickel-organic frameworks based on a carboxylated ligand [2,6-naphthalenedicarboxylic acid (Ni-NDC)] have abundant and uniformly distributed single-atom Ni sites, enabling superior oxygen evolution reaction (OER) activity. In theory, most of the Ni atoms inside Ni-NDC microcrystals are coordinatively saturated except for the surface. Therefore, there are no accessible low-coordination atoms (LCAs) as electrocatalytic sites for the OER. One effective way is to expose more LCAs by preparing self-supporting Ni-NDC nanoarrays (Ni-NDC NAs) with hierarchical secondary structural units. Another effective method is to create more internal LCAs by removing partial ligands or coordination atoms attached to the Ni atoms. Herein, by combining the two strategies, we engineered LCAs in the interior and exterior of Ni-NDC to synergistically accelerate the OER. In brief, ultrathick "brick-like" Ni-NDC NAs were first prepared with dissolution and coordination effects of NDC on self-sacrificial templates of "agaric-like" nickel hydroxide nanoarrays [Ni(OH)2 NAs]. Subsequently, dual-coordinated NDC was partially replaced by monocoordinated 2-naphthoic acid (NA). The Ni-NDC NAs were further tailed into ultrathin "liner leaf-like" nanoneedle arrays (LCAs-Ni-NDC NAs). As a consequence, the LCAs-Ni-NDC NAs have more internal and external LCAs, which can deliver an OER performance that is superior to that of Ni-NDC NAs.
Collapse
Affiliation(s)
- Shan Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Chong Lin
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xuetong Zhang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Ye Tan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Bin Xiao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yepeng Zeng
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Jingyang Tian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Minghui Cao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yuanping Jiang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Min Li
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
6
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
7
|
Jiang H, Yu Y, Duan X, Chen P, Wang S, Qiu X, Ye L, Tu X. Heterostructured MoO 3 Anchored Defect-Rich NiFe-LDH/NF as a Robust Self-Supporting Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307797. [PMID: 38032156 DOI: 10.1002/smll.202307797] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Indexed: 12/01/2023]
Abstract
The rational design of inexpensive metal electrocatalysts with exciting catalytic activity for overall water splitting (OWS) remains a significant challenge. Heterostructures of NiFe layered double hydroxides (NiFe-LDHs) with abundant oxygen defects and tunable electronic properties have garnered considerable attention. Here, a self-supporting heterostructured catalyst (named MoO3/NiFe-NF) is synthesized via a hydrothermal method to grow NiFe-LDH with oxygen vacancies (OV) in situ on inexpensive nickel foam (NF). Subsequently, MoO3 is anchored and grown on the surface of NiFe-LDH by electrodeposition. The obtained catalysts achieved outstanding oxygen/hydrogen evolution reaction (OER/HER, 212 mV/85 mV@10 mA cm-2) performance in 1 m KOH. Additionally, when MoO3/NiFe-NF is utilized as the cathode and anode in OWS, a current density of 10 mA cm-2 can be obtained as an ultralow battery voltage of 1.43 V, a significantly lower value compared to the commercial electrolyzer incorporating Pt/C and IrO2 electrode materials. Finally, density functional theory (DFT) calculations and advanced spectroscopy technology are conducted to reveal the effects of heterojunctions and OV on the internal electronic structure of the electrical catalysts. Mainly, the present study provides a novel tactic for the rational design of remarkable, low-cost NiFe-LDH electrocatalysts with heterostructures for OWS.
Collapse
Affiliation(s)
- Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Yunjie Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Xueqing Duan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Shuai Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Xianhua Qiu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Long Ye
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Xinman Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Institute of Environmental and Chemical Engineering, National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| |
Collapse
|
8
|
Chen K, Kim GC, Kim C, Yadav S, Lee IH. Engineering core-shell hollow-sphere Fe 3O 4@FeP@nitrogen-doped-carbon as an advanced bi-functional electrocatalyst for highly-efficient water splitting. J Colloid Interface Sci 2024; 657:684-694. [PMID: 38071817 DOI: 10.1016/j.jcis.2023.11.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Given the rapidly increasing energy demand and environmental pollution, to achieve energy conservation and emission reduction, hydrogen production has emerged as a promising alternative to traditional fossil fuels because of its high gravimetric energy density, and renewable and environmentally friendly characteristics. Herein, a core-shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon (labeled as H-Fe3O4@FeP@NC) with a dual-interface, novel morphology, and superior conductivity is prepared as an advanced bi-functional electrocatalyst for electrochemical overall water splitting using a collaborative strategy comprising of facile self-assembly and phosphating. The prepared catalyst exhibits superior electrocatalytic activity compared to H-Fe3O4@NC and H-Fe3O4 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Additionally, the overpotential of H-Fe3O4@FeP@NC for OER/HER (258/165 mV at 10 mA/cm2) is significantly lower than those of H-Fe3O4@NC (274/209 mV) and H-Fe3O4 (287/213 mV) at 10 mA/cm2. Meanwhile, the as-synthesized H-Fe3O4@FeP@NC, as an electrode pair, displays a low cell voltage of 1.69 V at 10 mA/cm2 and excellent stability after 100 h, indicating its practical application for overall water splitting. This work presents a practical and economical strategy toward the fabrication of catalyst for efficient water splitting and fuel cell.
Collapse
Affiliation(s)
- Kai Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyu-Cheol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chiyeop Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunny Yadav
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Liao P, Kang J, Xiang R, Wang S, Li G. Electrocatalytic Systems for NO x Valorization in Organonitrogen Synthesis. Angew Chem Int Ed Engl 2024; 63:e202311752. [PMID: 37830922 DOI: 10.1002/anie.202311752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Inorganic nitrogen oxide (NOx ) species, such as NO, NO2 , NO3 - , NO2 - generated from the decomposition of organic matters, volcanic eruptions and lightning activated nitrogen, play important roles in the nitrogen cycle system and exploring the origin of life. Meanwhile, excessive emission of NOx gases and residues from industry and transportation causes troubling problems to the environment and human health. How to efficiently handle these wastes is a global problem. In response to the growing demand for sustainability, scientists are actively pursuing sustainable electrochemical technologies powered by renewable energy sources and efficient utilization of hydrogen energy to convert NOx species into high-value organonitrogen chemicals. In this minireview, recent advances of electrocatalytic systems for NOx species valorization in organonitrogen synthesis are classified and described, such as amino acids, amide, urea, oximes, nitrile etc., that have been widely applied in medicine, life science and agriculture. Additionally, the current challenges including multiple side reactions and complicated paths, viable solutions along with future directions ahead in this field are also proposed. The coupling electrocatalytic systems provide a green mode for fixing nitrogen cycle bacteria and bring enlightenment to human sustainable development.
Collapse
Affiliation(s)
- Peisen Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Jiawei Kang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Runan Xiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shihan Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Liu W, Ni C, Gao M, Zhao X, Zhang W, Li R, Zhou K. Metal-Organic-Framework-Based Nanoarrays for Oxygen Evolution Electrocatalysis. ACS NANO 2023; 17:24564-24592. [PMID: 38048137 DOI: 10.1021/acsnano.3c09261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The development of highly active and stable electrode materials for the oxygen evolution reaction (OER) is essential for the widespread application of electrochemical energy conversion systems. In recent years, various metal-organic frameworks (MOFs) with self-supporting array structures have been extensively studied because of their high porosity, abundant metal sites, and flexible and adjustable structures. This review provides an overview of the recent progress in the design, preparation, and applications of MOF-based nanoarrays for the OER, beginning with the introduction of the architectural advantages of the nanoarrays and the characteristics of MOFs. Subsequently, the design principles of robust and efficient MOF-based nanoarrays as OER electrodes are highlighted. Furthermore, detailed discussions focus on the composition, structure, and performance of pristine MOF nanoarrays (MOFNAs) and MOF-based composite nanoarrays. On the one hand, the effects of the two components of MOFs and several modification methods are discussed in detail for MOFNAs. On the other hand, the review emphasizes the use of MOF-based composite nanoarrays composed of MOFs and other nanomaterials, such as oxides, hydroxides, oxyhydroxides, chalcogenides, MOFs, and metal nanoparticles, to guide the rational design of efficient OER electrodes. Finally, perspectives on current challenges, opportunities, and future directions in this research field are provided.
Collapse
Affiliation(s)
| | | | - Ming Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
11
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
12
|
Gao Y, Ding H, Fan X, Xiao J, Zhang L, Xu G. Anchoring cobalt molybdenum nickel alloy nanoparticles on molybdenum dioxide nanosheets as efficient and stable self-supported catalyst for overall water splitting at high current density. J Colloid Interface Sci 2023; 648:745-754. [PMID: 37321094 DOI: 10.1016/j.jcis.2023.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Developing bifunctional electrocatalysts with efficient and stable catalytic performance at high current density to improve the productivity of water splitting is important for relieving the environmental pollution and energy crisis. Herein, the Ni4Mo and Co3Mo alloy nanoparticles were anchored on MoO2 nanosheets (H-NMO/CMO/CF-450) by annealing the NiMoO4/CoMoO4/CF (CF: self-made cobalt foam) under Ar/H2 atmosphere. Benefitting from the nanosheets structure, synergistic effect of the alloys, existence of oxygen vacancy and the cobalt foam with smaller pore sizes as conductive substrate, the self-supported H-NMO/CMO/CF-450 catalyst demonstrates outstanding electrocatalytic performance, which delivers small overpotential of 87 (270) mV at 100 (1000) mA·cm-2 for HER and 281 (336) mV at 100 (500) mA·cm-2 for OER in 1 M KOH. Meanwhile, the H-NMO/CMO/CF-450 catalyst is used as working electrodes for overall water splitting, which just require 1.46 V @ 10 mA·cm-2 and 1.71 V @ 100 mA·cm-2, respectively. More importantly, the H-NMO/CMO/CF-450 catalyst can stabilize for 300 h at 100 mA·cm-2 in both HER and OER. This research provides an idea for the preparation of stable and efficient catalysts at high current density.
Collapse
Affiliation(s)
- Ya Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Hui Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiaoyu Fan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Juan Xiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
13
|
Lee SA, Bu J, Lee J, Jang HW. High‐Entropy Nanomaterials for Advanced Electrocatalysis. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Sol A Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Liquid Sunlight Alliance (LiSA) Department of Applied Physics and Materials Science California Institute of Technology Pasadena CA 91106 USA
| | - Jeewon Bu
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Jiwoo Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Advanced Institute of Convergence Technology Seoul National University Suwon 16229 Republic of Korea
| |
Collapse
|
14
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
15
|
Liu L, He Y, Ma DD, Wu XT, Zhu QL. Directional editing of self-supported nanoarray electrode for adaptive paired-electrolysis. J Colloid Interface Sci 2023; 640:423-433. [PMID: 36870218 DOI: 10.1016/j.jcis.2023.02.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Anodic oxidation assisted hydrogen production under mild conditions powered by renewable electricity represents a sustainable approach to energy conversion systems. Here, we fabricated a versatile and universal self-supported nanoarray platform that can be intelligently edited to achieve adaptive electrocatalysis for alcohol oxidation reactions and hydrogen evolution reaction (HER). The obtained self-supported nanoarray electrocatalysts exhibit excellent catalytic activity due to the integration of multiple merits of rich nanointerface-reconstruction and self-supported hierarchical structures. Particularly, the membrane-free pair-electrolysis system coupling HER and ethylene glycol oxidation reaction (EGOR) required an applied voltage of only 1.25 V to drive the current density of 10 mA cm-2, which is about 510 mV lower than that of the overall water splitting, showing the capability to simultaneously produce H2 and formate with high Faradic efficiency and stability. This work demonstrates a catalytic self-supported nanoarray platform for energy-efficient production of high-purity H2 and value-added chemicals.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchun He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Recent Advances of Modified Ni (Co, Fe)-Based LDH 2D Materials for Water Splitting. Molecules 2023; 28:molecules28031475. [PMID: 36771139 PMCID: PMC9919971 DOI: 10.3390/molecules28031475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Water splitting technology is an efficient approach to produce hydrogen (H2) as an energy carrier, which can address the problems of environmental deterioration and energy shortage well, as well as establishment of a clean and sustainable hydrogen economy powered by renewable energy sources due to the green reaction of H2 with O2. The efficiency of H2 production by water splitting technology is intimately related with the reactions on the electrode. Nowadays, the efficient electrocatalysts in water splitting reactions are the precious metal-based materials, i.e., Pt/C, RuO2, and IrO2. Ni (Co, Fe)-based layered double hydroxides (LDH) two-dimensional (2D) materials are the typical non-precious metal-based materials in water splitting with their advantages including low cost, excellent electrocatalytic performance, and simple preparation methods. They exhibit great potential for the substitution of precious metal-based materials. This review summarizes the recent progress of Ni (Co, Fe)-based LDH 2D materials for water splitting, and mainly focuses on discussing and analyzing the different strategies for modifying LDH materials towards high electrocatalytic performance. We also discuss recent achievements, including their electronic structure, electrocatalytic performance, catalytic center, preparation process, and catalytic mechanism. Furthermore, the characterization progress in revealing the electronic structure and catalytic mechanism of LDH is highlighted in this review. Finally, we put forward some future perspectives relating to design and explore advanced LDH catalysts in water splitting.
Collapse
|