1
|
Xiao J, Wang Y, Xiao B, Liu B. Electrochemical hydrogenative coupling of nitrobenzene into azobenzene over a mesoporous palladium-sulfur cathode. Chem Sci 2025:d4sc08608b. [PMID: 40303459 PMCID: PMC12036148 DOI: 10.1039/d4sc08608b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Azobenzene (AZO) and its derivatives are of great importance in the dyestuff and pharmaceutical industries; however, their sustainable synthesis is much slower than expected due to the lack of high-performance catalysts. In this work, we report a robust yet highly efficient catalyst of PdS mesoporous nanospheres (MNSs) with confined mesostructures and binary elemental composition that achieved sustainable electrosynthesis of value-added AZO by selective hydrogenative coupling of nitrobenzene (NB) feedstocks in H2O under ambient conditions. Using a renewable electricity source and H2O, binary PdS MNSs exhibited a remarkable NB conversion of 95.4%, impressive AZO selectivity of 93.4%, and good cycling stability in selective NB hydrogenation reaction (NBHR) electrocatalysis. Detailed mechanism studies revealed that the confined mesoporous microenvironment of PdS MNSs facilitated the hydrogenative coupling of key intermediates (nitrosobenzene and phenylhydroxylamine) into AZO and/or azoxybenzene (AOB), while their electron-deficient S sites stabilized the Pd-spillovered active H* and inhibited the over-hydrogenation of AZO/AOB into AN. By coupling with the anodic methanol oxidation reaction (MOR), the (-)NBHR‖MOR(+) two-electrode system exhibits much better NB-to-AZO performance in a sustainable and energy-efficient manner. This work thus paves the way for designing functional mesoporous metal alloy electrocatalysts applied in the sustainable electrosynthesis of industrial value-added chemicals.
Collapse
Affiliation(s)
- Jie Xiao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Bo Xiao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
2
|
Zhang Y, Lang Z, Zhang Q, Yao R, Tang W, Qiu T, Li Y, Tan H, Wang Y, Li Y. Moderate Active Hydrogen Generation over a Ni 2P/CoP Heterostructure for One-Step Electrosynthesizing of Azobenzene with High Selectivity. NANO LETTERS 2025; 25:828-836. [PMID: 39762148 DOI: 10.1021/acs.nanolett.4c05315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Through hydrogenation and N-N coupling, azobenzene can be produced via highly selective electrocatalytic nitrobenzene reduction, offering a mild, cost-effective, and sustainable industrial route. Inspired by the density functional theory calculations, the introduction of H* active Ni2P into CoP, which reduces the water dissociation energy barrier, optimizes H* adsorption, and moderates key intermediates' adsorption, is expected to assist its hydrogenation ability for one-step electrosynthesizing azobenzene. A self-supported NiCo@Ni2P/CoP nanorod array electrode was synthesized, featuring NiCo alloy nanoparticles within a Ni2P/CoP shell. By virtue of the thermodynamically optimal Ni2P/CoP heterostructure, along with overall fast electron transport in a core-shell integrated electrode, NiCo@Ni2P/CoP with abundant interfacial structure attains a great nitrobenzene conversion of 94.3%, especially prominent azobenzene selectivity of 97.2%, and Faradaic efficiency of 94.1% at -0.9 V (vs Hg/HgO). High-purity azobenzene crystals can also self-separate under refrigeration postelectrolysis. This work provides an energy-efficient and scalable pathway for the economical preparation of azobenzene in the electrocatalytic nitrobenzene hydrogenation.
Collapse
Affiliation(s)
- Yuekun Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, China
| | - Ruiqi Yao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Wensi Tang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - YongHui Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - YangGuang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
3
|
Zhang K, Li B, Guo F, Graham N, He W, Yu W. Unveiling the Dual Role of Oxophilic Cr 4+ in Cr-Cu 2O Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202411796. [PMID: 39394644 DOI: 10.1002/anie.202411796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/13/2024]
Abstract
Cuprous oxide (Cu2O)-based catalysts present a promising activity for the electrochemical nitrate (NO3 -) reduction to ammonia (eNO3RA), but the electrochemical instability of Cu+ species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu+ through the incorporation of Cr4+ into the Cu2O matrix to construct a Cr4+-O-Cu+ network structure. In situ and quasi-in situ characterizations reveal that the Cu+ species are well maintained via the strong Cr4+-O-Cu+ interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr3+-O-Cu+ from Cr4+-O-Cu+ is identified as a dual-active site for eNO3RA, wherein the Cu+ sites are responsible for the activation of N-containing intermediates, while the assisting Cr3+ centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr3+-O-Cu+ favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH3 desorption with a low energy barrier. The superior eNO3RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH3 production and sulfur recovery with reduced energy input.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fengchen Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street, Changchun, 130022, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
4
|
Reidell A, Pazder KE, LeBarron CT, Stewart SA, Hosseini S. Modified Working Electrodes for Organic Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:579-603. [PMID: 39649987 PMCID: PMC11621959 DOI: 10.1021/acsorginorgau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024]
Abstract
Organic electrosynthesis has gained much attention over the last few decades as a promising alternative to traditional synthesis methods. Electrochemical approaches offer numerous advantages over traditional organic synthesis procedures. One of the most interesting aspects of electroorganic synthesis is the ability to tune many parameters to affect the outcome of the reaction of interest. One such parameter is the composition of the working electrode. By changing the electrode material, one can influence the selectivity, product distribution, and rate of organic reactions. In this Review, we describe several electrode materials and modifications with applications in organic electrosynthetic transformations. Included in this discussion are modifications of electrodes with nanoparticles, composite materials, polymers, organic frameworks, and surface-bound mediators. We first discuss the important physicochemical and electrochemical properties of each material. Then, we briefly summarize several relevant examples of each class of electrodes, with the goal of providing readers with a catalog of electrode materials for a wide variety of organic syntheses.
Collapse
Affiliation(s)
- Alexander
C. Reidell
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Kristen E. Pazder
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Christopher T. LeBarron
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Skylar A. Stewart
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyyedamirhossein Hosseini
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Wu Y, Lin H, Mao Q, Yu H, Deng K, Wang J, Wang L, Wang Z, Wang H. Trace Cu-Induced Low C─N Coupling Barrier on Amorphous Co Metallene Boride for Boosting Electrochemical Urea Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407679. [PMID: 39394975 DOI: 10.1002/smll.202407679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The electrochemical C─N coupling of carbon dioxide (CO2) and nitrate(NO3 -) is an alternative strategy to the traditional high-energy industrial pathway for urea synthesis, which urgently requires the design of efficient catalysts to achieve high yield and Faraday efficiency (FE). Here, amorphous low-content copper-doped cobalt metallene boride (a-Cu0.1CoBx metallene) is designed for urea synthesis via electrochemical C─N coupling. The a-Cu0.1CoBx metallene can drive electrocatalytic C─N coupling of CO2 and NO3 - for urea synthesis in CO2-saturated 0.1 m KNO3 electrolyte, with 27.7% of FE and 312 µg h-1 mg-1 cat. of yield at -0.5 V, as well as superior cycling stability. The in situ Fourier transform infrared and theoretical calculations reveal that electronic effect between Cu, Co, and B causes Cu and Co as dual active sites to promote the adsorption of reactants. Furthermore, the introduced trace Cu reduces the reaction energy barrier of the C─N coupling to facilitate urea synthesis. This work provides a promising route for the optimization of Co-based metallene for the electrosynthesis of urea through C─N coupling.
Collapse
Affiliation(s)
- Yueji Wu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Han Lin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Pei Y, Li D, Qiu C, Yan L, Li Z, Yu Z, Fang W, Lu Y, Zhang B. High-Entropy Sulfide Catalyst Boosts Energy-Saving Electrochemical Sulfion Upgrading to Thiosulfate Coupled with Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202411977. [PMID: 39082829 DOI: 10.1002/anie.202411977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Electrochemical sulfion oxidation reaction (SOR) offers a sustainable strategy for sulfion-rich wastewater treatment, which can couple with cathodic hydrogen evolution reaction (HER) for energy-saving hydrogen production. However, the corrosion and passivation of sulfur species render the inferior catalytic SOR performance, and the oxidation product, polysulfide, requires further acidification to recover cheap elementary sulfur. Here, we reported an amorphous high-entropy sulfide catalyst of CuCoNiMnCrSx nanosheets in situ growth on the nickel foam (CuCoNiMnCrSx/NF) for SOR, which achieved an ultra-low potential of 0.25 V to afford 100 mA cm-2, and stable electrolysis at as high as 1 A cm-2 for 100 h. These were endowed by the manipulated chemical environments surrounding Cu+ sites and the constructed "soft-acid" to "hard-acid" adsorption/desorption sites, enabling synergistically boosted adsorption/desorption process of sulfur species during SOR. Moreover, we developed an electrochemical-chemical tandem process to convert sulfions to value-added thiosulfate, providing a good choice for simultaneous wastewater utilization and hydrogen production.
Collapse
Affiliation(s)
- Yuhou Pei
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Di Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongmiao Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Zexin Yu
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), University of Stuttgart, Allmandring 7b, 70569, Stuttgart, Germany
| | - Wenzhang Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Bing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| |
Collapse
|
7
|
Xiao Y, Tan X, Du B, Guo Y, He W, Cui H, Wang C. Strained Au skin on Mesoporous Intermetallic AuCu 3 Nanocoral for Electrocatalytic Conversion of Nitrate to Ammonia across a Wide Concentration Range. Angew Chem Int Ed Engl 2024; 63:e202408758. [PMID: 38899532 DOI: 10.1002/anie.202408758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Electrochemical nitrate reduction reaction (NitRR) uses nitrate from wastewater, offering a hopeful solution for environmental issues and ammonia production. Yet, varying nitrate levels in real wastewater greatly affect NitRR, slowing down its multi-step process. Herein, a multi-strategy approach was explored through the design of ordered mesoporous intermetallic AuCu3 nanocorals with ultrathin Au skin (meso-i-AuCu3@ultra-Au) as an efficient and concentration-versatile catalyst for NitRR. The highly penetrated structure, coupled with the compressive stress exerted on the skin layer, not only facilitates rapid electron/mass transfer, but also effectively modulates the surface electronic structure, addressing the concentration-dependent challenges encountered in practical NitRR process. As expected, the novel catalyst demonstrates outstanding NitRR activities and Faradaic efficiencies exceeding 95 % across a real and widespread concentration range (10-2000 mM). Notably, its performance at each concentration matched or exceeded that of the best-known catalyst designed for that concentration. Multiple operando spectroscopies unveiled the catalyst concurrently optimized the adsorption behavior of different intermediates (adsorbed *NOx and *H) while expediting the hydrogenation steps, leading to an efficient overall reduction process. Moreover, the catalyst also displays promising potential for use in ammonia production at industrial-relevant current densities and in conceptual zinc-nitrate batteries, serving trifunctional nitrate conversion, ammonia synthesis and power supply.
Collapse
Affiliation(s)
- Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Binjie Du
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Zhu S, Wang ZJ, Chen Y, Lu T, Li J, Wang J, Jin H, Lv JJ, Wang X, Wang S. Recent Progress Toward Electrocatalytic Conversion of Nitrobenzene. SMALL METHODS 2024; 8:e2301307. [PMID: 38088567 DOI: 10.1002/smtd.202301307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Indexed: 08/18/2024]
Abstract
Despite that extensive efforts have been dedicated to the search for advanced catalysts to boost the electrocatalytic nitrobenzene reduction reaction (eNBRR), its progress is severely hampered by the limited understanding of the relationship between catalyst structure and its catalytic performance. Herein, this review aims to bridge such a gap by first analyzing the eNBRR pathway to present the main influential factors, such as electrolyte feature, applied potential, and catalyst structure. Then, the recent advancements in catalyst design for eNBRR are comprehensively summarized, particularly about the impacts of chemical composition, morphology, and crystal facets on regulating the local microenvironment, electron and mass transport for boosting catalytic performance. Finally, the future research of eNBRR is also proposed from the perspectives of performance enhancement, expansion of product scope, in-depth understanding of the reaction mechanism, and acceleration of the industrialization process through the integration of upstream and downstream technologies.
Collapse
Affiliation(s)
- Shaojun Zhu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zheng-Jun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yihuang Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Tianrui Lu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jun Li
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, N9B3P4, Canada
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Jing Lv
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
9
|
Lu Y, Shi Y, Wang Y, Cao J, Wang J, Zheng Y, Pan J, Zhong W, Li C. A defect-enriched PdMo bimetallene for ethanol oxidation reaction and 4-nitrophenol reduction. Chem Commun (Camb) 2024; 60:3323-3326. [PMID: 38436205 DOI: 10.1039/d4cc00598h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A defect-enriched PdMo bimetallene (d-PdMo) was prepared by a one-pot wet chemical reaction followed by post-treatment of oxidative etching. The introduction of defects can tailor the electronic structure of PdMo bimetallene and the prepared d-PdMo bimetallene exhibited excellent performance in the ethanol oxidation reaction (EOR) and 4-nitrophenol (4-NP) reduction reaction.
Collapse
Affiliation(s)
- Yi Lu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Yiwei Shi
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Yu Wang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jun Cao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jingjing Wang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Yingying Zheng
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jiaqi Pan
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Wenwu Zhong
- Department of Materials, Taizhou University, Taizhou, 318000, P. R. China
| | - Chaorong Li
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
10
|
Gao K, Zhou M, Liu Y, Wang S, Fu R, Wang Z, Guo J, Liu Z, Wang H, Zhao Y, Wang Q. The dual built-in electric fields across CoS/MoS 2 heterojunctions for energy-saving hydrogen production coupled with sulfion degradation. J Colloid Interface Sci 2024; 657:290-299. [PMID: 38043230 DOI: 10.1016/j.jcis.2023.11.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Substituting the sluggish oxygen evolution reaction with the sulfur oxidation reaction can significantly reduce energy consumption and eliminate environmental pollutants during hydrogen generation. However, the progress of this technology has been hindered due to the lack of cost-effective, efficient, and durable electrocatalysts. In this study, we present the design and construction of a hierarchical metal sulfide catalyst with a gradient structure comprising nanoparticles, nanosheets, and microparticles. This was achieved through a structure-breaking sulfuration strategy, resulting in a "ball of yarn"-like core/shell CoS/MoS2 microflower with CoS/MoS2/CoS dual-heterojunctions. The difference in work functions between CoS and MoS2 induces an electron polarization effect, creating dual built-in electric fields at the hierarchical interfaces. This effectively modulates the adsorption behavior of catalytic intermediates, thereby reducing the energy barrier for catalytic reactions. The optimized catalyst exhibits outstanding electrocatalytic performance for both the hydrogen evolution reaction and the sulfur oxidation reaction. Remarkably, in the assembled electrocatalytic coupling system, it only requires a cell voltage of 0.528 V at 10 mA cm-2 and maintains long-term durability for over 168 h. This work presents new opportunities for low-cost hydrogen production and environmentally friendly sulfion recycling.
Collapse
Affiliation(s)
- Kaiwen Gao
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Min Zhou
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, PR China
| | - Yifeng Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Shuocheng Wang
- School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, Hubei, PR China
| | - Rong Fu
- School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, Hubei, PR China
| | - Zhaoyang Wang
- School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, Hubei, PR China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430062, Hubei, PR China.
| | - Jinghui Guo
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Ziang Liu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, PR China
| | - Hairen Wang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei, PR China; State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, PR China; College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Qijun Wang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| |
Collapse
|
11
|
Deng K, Lian Z, Wang W, Yu J, Yu H, Wang Z, Xu Y, Wang L, Wang H. Lattice Strain and Charge Redistribution of Pt Cluster/Ir Metallene Heterostructure for Ethylene Glycol to Glycolic Acid Conversion Coupled with Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305000. [PMID: 37649164 DOI: 10.1002/smll.202305000] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Upgrading overall water splitting (OWS) system and developing high-performance electrocatalysts is an attractive way to the improve efficiency and reduce the consumption of hydrogen (H2 ) production from electrolyzed water. Here, a Pt cluster/Ir metallene heterojunction structure (Pt/Ir hetero-metallene) with a unique Pt/Ir interface is reported for the conversion of ethylene glycol (EG) to glycolic acid (GA) coupled with H2 production. With the assistance of ethylene glycol oxidation (EGOR), the Pt/Ir||Pt/Ir hetero-metallene two-electrode water electrolysis system exhibits a lower cell voltage of 0.36 V at 10 mA cm-2 . Furthermore, the Faradaic efficiency of EG to GA is as high as 87%. The excellent performance of this new heterostructure arise from the charge redistribution and strain effects induced by Pt-Ir interactions between the heterogeneous interfaces, as well as the larger specific surface area and more active sites due to the metallene structure.
Collapse
Affiliation(s)
- Kai Deng
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zilong Lian
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenxin Wang
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiabao Yu
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- A State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
12
|
Ren JT, Chen L, Wang HY, Tian W, Wang L, Sun M, Feng Y, Zhai SX, Yuan ZY. Self-Powered Hydrogen Production with Improved Energy Efficiency via Polysulfides Redox. ACS NANO 2023; 17:25707-25720. [PMID: 38047808 DOI: 10.1021/acsnano.3c10867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the pursuit of efficient solar-driven electrocatalytic water splitting for hydrogen production, the intrinsic challenges posed by the sluggish kinetics of anodic oxygen evolution and intermittent sunlight have prompted the need for innovative energy systems. Here, we introduce an approach by coupling the polysulfides oxidation reaction with the hydrogen evolution reaction for energy-saving H2 production, which could be powered by an aqueous zinc-polysulfides battery to construct a self-powered energy system. This unusual hybrid water electrolyzer achieves 300 mA cm-2 at a low cell voltage of 1.14 V, saving electricity consumption by 100.4% from 5.47 to 2.73 kWh per m3 H2 compared to traditional overall water splitting. Benefiting from the favorable reaction kinetics of polysulfides oxidation/reduction, the aqueous zinc-polysulfides battery exhibits an energy efficiency of approximately 89% at 1.0 mA cm-2. Specially, the zinc-polysulfide battery effectively stores intermittent solar energy as chemical energy during light reaction by solar cells. Under an unassisted light reaction, the batteries could release energy to drive H2 production through a hybrid water electrolyzer for uninterrupted hydrogen production. Therefore, the aim of simultaneously generating H2 and eliminating the restrictions of intermittent sunlight is realized by combining the merits of polysulfides redox, an aqueous metal-polysulfide battery, and solar cells. We believe that this concept and utilization of polysulfides redox will inspire further fascinating attempts for the development of sustainable energy via electrocatalytic reactions.
Collapse
Affiliation(s)
- Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Lei Chen
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Wenwen Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Minglei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Si-Xiang Zhai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
13
|
Wang H, Li Y, Liu S, Yu H, Deng K, Wang Z, Xu Y, Wang L. B-Doping-Induced Lattice Expansion of Pd Metallene Nanoribbons for Oxygen Reduction Reaction. Inorg Chem 2023; 62:15157-15163. [PMID: 37658811 DOI: 10.1021/acs.inorgchem.3c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Pd-based metallene is regarded as an efficient catalyst in the field of oxygen reduction reaction (ORR) because of its fantastic physicochemical features. The morphological structure control, lattice strain engineering, and electronic structure modulation of Pd-based metallene are effective tactics to enhance its electrocatalytic performance. In this work, we fabricate atomically thin B-doped Pd metallene nanoribbons (B-Pd MNRs) for efficient alkaline ORR. The atomically thin nanoribbon structure of B-Pd MNRs can expose many surface atoms as catalytically active sites. Moreover, the incorporation of boron effectively induces the lattice expansion and modulates the electronic structure of Pd, which can synergistically weaken the adsorption of intermediate species on B-Pd MNRs. Therefore, the B-Pd MNRs display excellent activity and durability for ORR. This work opens an avenue to the synthesis of atomically thin heteroatom-doped metallene nanoribbons for energy electrocatalytic applications.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunju Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
14
|
Mao Q, Mu X, Wang W, Deng K, Yu H, Wang Z, Xu Y, Wang L, Wang H. Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading. Nat Commun 2023; 14:5679. [PMID: 37709775 PMCID: PMC10502102 DOI: 10.1038/s41467-023-41423-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm-2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.
Collapse
Affiliation(s)
- Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xu Mu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenxin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
15
|
Lyu C, Li Y, Cheng J, Yang Y, Wu K, Wu J, Wang H, Lau WM, Tian Z, Wang N, Zheng J. Dual Atoms (Fe, F) Co-Doping Inducing Electronic Structure Modulation of NiO Hollow Flower-Spheres for Enhanced Oxygen Evolution/Sulfion Oxidation Reaction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302055. [PMID: 37222116 DOI: 10.1002/smll.202302055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Heteroatoms Fe, F co-doped NiO hollow spheres (Fe, F-NiO) are designed, which simultaneously integrate promoted thermodynamics by electronic structure modulation with boosted reaction kinetics by nano-architectonics. Benefiting from the electronic structure co-regulation of Ni sites by introducing Fe and F atoms in NiO , as the rate-determined step (RDS), the Gibbs free energy of OH* intermediates (ΔGOH* ) for Fe, F-NiO catalyst is significantly decreased to 1.87 eV for oxygen evolution reaction (OER) compared with pristine NiO (2.23 eV), which reduces the energy barrier and improves the reaction activity. Besides, densities of states (DOS) result verifies the bandgap of Fe, F-NiO(100) is significantly decreased compared with pristine NiO(100), which is beneficial to promote electrons transfer efficiency in electrochemical system. Profiting by the synergistic effect, the Fe, F-NiO hollow spheres only require the overpotential of 215 mV for OER at 10 mA cm-2 and extraordinary durability under alkaline condition. The assembled Fe, F-NiO||Fe-Ni2 P system only needs 1.51 V to reach 10 mA cm-2 , also exhibits outstanding electrocatalytic durability for continuous operation. More importantly, replacing the sluggish OER by advanced sulfion oxidation reaction (SOR) not only can realize the energy saving H2 production and toxic substances degradation, but also bring additional economic benefits.
Collapse
Affiliation(s)
- Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanle Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiwen Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huichao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, P. R. China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, P. R. China
| |
Collapse
|
16
|
Wang Z, Xu S, Mao Q, Deng K, Xu Y, Wang H, Yu H, Wang L. Polyethylenimine-Ethylenediamine-Induced Pd Metallene toward Alkaline Oxygen Reduction. Inorg Chem 2023; 62:13537-13543. [PMID: 37540794 DOI: 10.1021/acs.inorgchem.3c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Designing two-dimensional (2D) materials functionalized with organic molecules is an effective tactic to enhance catalytic performances for the oxygen reduction reaction (ORR). Herein, we synthesize Pd metallene with in situ modification of polyethylenimine-ethylenediamine (Pd@PEI-EDA metallene), in which PEI-EDA serves as both the structure-directing agent and modifier. Pd@PEI-EDA metallene has ample active sites and tuneable electronic structures due to ultrathin nanosheets with abundant wrinkles and interfacial structure. In contrast with commercial Pd/C and Pt/C, Pd@PEI-EDA metallene displays preferable catalytic ORR performance under alkaline conditions. This work offers an in situ interface engineering tactic for the preparation of 2D polymer-metal electrocatalysts to boost the ORR performance.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shan Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
17
|
Wang H, Mu X, Mao Q, Deng K, Yu H, Xu Y, Li X, Wang Z, Wang L. Interfacial engineering of hydrophobic octadecanethiol/Pd metallene toward electrocatalytic nitrogen reduction. Chem Commun (Camb) 2023; 59:6552-6555. [PMID: 37162291 DOI: 10.1039/d3cc01234d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we propose the modification of ultrathin and wrinkled Pd metallene by hydrophobic octadecanethiol (Pdene@C18) via Pd-S bonds for the nitrogen reduction reaction. The hydrophobic self-assembled monolayer C18 can effectively capture more N2 and inhibit the hydrogen evolution reaction. As a result, a high NH3 yield and Faraday efficiency of 27.97 μg h-1 mgcat.-1 and 14.29% are achieved for Pdene@C18 under neutral conditions, respectively, highlighting the modification of hydrophobic monolayers for efficient nitrogen electro-reduction to ammonia.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xu Mu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
18
|
Wang W, Mao Q, Deng K, Yu H, Wang Z, Xu Y, Li X, Wang L, Wang H. Sulfur-Induced Low Crystallization of Ultrathin Pd Nanosheet Arrays for Sulfur Ion Degradation-Assisted Energy-Efficient H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207852. [PMID: 36929583 DOI: 10.1002/smll.202207852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The utilization of thermodynamically favorable sulfur oxidation reaction (SOR) as an alternative to sluggish oxygen evolution reaction is a promising technology for low-energy H2 production while degrading the sulfur source from wastewater. Herein, amorphous/crystalline S-doped Pd nanosheet arrays on nickel foam (a/c S-Pd NSA/NF) is prepared by S-doping crystalline Pd NSA/NF. Owing to the ultrathin amorphous nanosheet structure and the incorporation of S atoms, the a/c S-Pd NSA/NF provides a large number of active sitesand the optimized electronic structure, while exhibiting outstanding electrocatalytic activity in hydrogen evolution reaction (HER) and SOR. Therefore, the coupling system consisting of SOR-assisted HER can reach a current density of 100 mA cm-2 at 0.642 V lower than conventional electrolytic water by 1.257 V, greatly reducing energy consumption. In addition, a/c S-Pd NSA/NF can generate H2 over a long period of time while degrading S2- in water to the value-added sulfur powder, thus further reducing the cost of H2 production. This work proposes an attractive strategy for the construction of an advanced electrocatalyst for H2 production and utilization of toxic sulfide wastewater by combining S-doping induced partial amorphization and ultrathin metal nanosheet arrays.
Collapse
Affiliation(s)
- Wenxin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|